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The History of Parallel PyTrilinos

• First versions of PyTrilinos were serial
• Marzio Sala implemented first parallel version
• Current status for MPI build:
–

 
from PyTrilinos import Epetra

 
automatically 

calls MPI_Init()
–

 
MPI_Finalize()

 
is registered with at_exit

 module
–

 
Epetra_MpiComm

 
class is fully wrapped, and 

Epetra.PyComm()

 
factory function is provided

–

 
$ mpirun -np 4 my_script.py

 
works

– A simple attempt at interactivity ($ mpirun -np 2 
python) would produce multiple prompts and 
confuse standard input



2007 Scientific Python Conference

• Attending tutorial sessions (SWIG)
• IPython tutorial included interactive parallelism 

demonstration (controller model)
• After I downloaded, compiled and installed 

required software, and IPython developers did the 
same with Trilinos, we got PyTrilinos to work 
interactively in parallel in about 5 minutes



IPython
• Enhanced version of python for interactive use
• Enhancements include:

– Emacs/bash style tab-completion
– Multiple layers of help (help(), ?, ??)
– More context for exception tracebacks
– Matlab-style input/output numbering w/cache
– “Magic” commands, including shell commands
– Generic shell access with the !

 

prefix (!!

 

If you want to 
capture output)
•$

 

prefix to expand python variables, $$

 

prefix for 
environment variables

– Logging
– Much, much more …



IPython Demo



Parallelism with IPython1

• Enable the rapid development of parallel codes
• Make all stages of parallel computing fully 

interactive:  development, debugging, testing, 
execution, monitoring ...

• Make parallel computing collaborative
• Seamless integration with other tools:  plotting, 

visualization, system shell, MPI, threads, etc
• Support many types of parallelism



IPython1 Architecture
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IPython Engine

• Python interpreter connected to a network
• Runs user code, maintains state
• Can be started with mpirun
• User code can contain direct or indirect calls to 

MPI (such as PyTrilinos)



IPython Controller

• Provides asynchronous interface to a set of 
Engines

• Manages a queue for each Engine
• Clients push/pull commands and objects to/from 

the Engines using the queues
• A set of Engines can be presented to a client in a 

variety of ways.  This enables different models of 
parallelism to be exposed.



IPython Clients

• Simple set of Python classes used to 
communicate with the Controller and Engines

• These classes can be used interactively or in 
non-interactive Python scripts

• Simple, high level interface
• Blocking and non-blocking modes



Startup Scripts

•ipcontroller
– Used to start the Controller
– The Controller listens on a number of ports and 

must be started first
•ipengine

– Used to start a single Engine after the Controller is 
running

– This script can be started using mpirun
•ipcluster

– Starts one Controller and N Engines on localhost or 
an ssh based cluster.



IPython1 RemoteController Interface

• Simple, intuitive way of working with the IPython 
Engines

• Fine grained access to specific Engines
• Most general way of working with Engines
• New users should start here
• Designed with interactive usage of MPI 

applications in mind



IPython1 + PyTrilinos

• If PyTrilinos and latest version of IPython1 are 
installed, it will “Just Work.”

• The first time we attempted this, it took a few 
minutes to work our how and when MPI_Init()

 would be called
• We have added a command line option to 
ipengine

 
to handle all of this automatically

–

 
$ mpirun -n 4 ipengine

 
--mpi=pytrilinos



IPython1 Parallel Demo



IPython1 Resources

• IPython Parallel Computing webpage
– http://ipython.scipy.org/moin/Parallel_Computing

• IPython1 README and INSTALL files
• doc/examples directory in the IPython1 source

svn

 

co http://ipython.scipy.org/svn/ipython/ipython1/trunk ipython



PyTrilinos for Trilinos Release 8.0

• Extensive Teuchos.ParameterList support
– Python dictionary interoperability

• Workable Teuchos::RCP support
– Python object are automatically ref-counted
– Teuchos::RCP should be invisible to python 

programmer
– Use cases where ref-counts do not sync

• NOX re-enabled
• Module for Anasazi package added
• Python help system for PyTrilinos now leverages 

doxygen documentation



PyTrilinos for Trilinos Release 8.0

• PyTrilinos requires that Trilinos libraries be built 
as shared

• Python-based build system that re-links object 
files as shared (supported under Mac OS X and 
Linux)
– Must be compiled as position-independent code

• Shared libraries can be built without building 
PyTrilinos
–

 
configure …

 
--enable-shared …

– Shared libraries put in 
BUILD/packages/PyTrilinos/shared
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