
Parallel Interactive Computing with
PyTrilinos and IPython

Bill Spotz, SNL
(Brian Granger, Tech-X Corporation)

November 8, 2007
Trilinos Users Group Meeting

Albuquerque, NM

The History of Parallel PyTrilinos

• First versions of PyTrilinos were serial
• Marzio Sala implemented first parallel version
• Current status for MPI build:
–

from PyTrilinos import Epetra

automatically

calls MPI_Init()
–

MPI_Finalize()

is registered with at_exit

 module
–

Epetra_MpiComm

class is fully wrapped, and

Epetra.PyComm()

factory function is provided

–

$ mpirun -np 4 my_script.py

works

– A simple attempt at interactivity ($ mpirun -np 2
python) would produce multiple prompts and
confuse standard input

2007 Scientific Python Conference

• Attending tutorial sessions (SWIG)
• IPython tutorial included interactive parallelism

demonstration (controller model)
• After I downloaded, compiled and installed

required software, and IPython developers did the
same with Trilinos, we got PyTrilinos to work
interactively in parallel in about 5 minutes

IPython
• Enhanced version of python for interactive use
• Enhancements include:

– Emacs/bash style tab-completion
– Multiple layers of help (help(), ?, ??)
– More context for exception tracebacks
– Matlab-style input/output numbering w/cache
– “Magic” commands, including shell commands
– Generic shell access with the !

prefix (!!

If you want to
capture output)
•$

prefix to expand python variables, $$

prefix for
environment variables

– Logging
– Much, much more …

IPython Demo

Parallelism with IPython1

• Enable the rapid development of parallel codes
• Make all stages of parallel computing fully

interactive: development, debugging, testing,
execution, monitoring ...

• Make parallel computing collaborative
• Seamless integration with other tools: plotting,

visualization, system shell, MPI, threads, etc
• Support many types of parallelism

IPython1 Architecture

IPython
Engine

IPython
Engine

IPython
Engine

IPython
Engine

IPython
Controller

Client Client

Instructions
Objects

IPython Engine

• Python interpreter connected to a network
• Runs user code, maintains state
• Can be started with mpirun
• User code can contain direct or indirect calls to

MPI (such as PyTrilinos)

IPython Controller

• Provides asynchronous interface to a set of
Engines

• Manages a queue for each Engine
• Clients push/pull commands and objects to/from

the Engines using the queues
• A set of Engines can be presented to a client in a

variety of ways. This enables different models of
parallelism to be exposed.

IPython Clients

• Simple set of Python classes used to
communicate with the Controller and Engines

• These classes can be used interactively or in
non-interactive Python scripts

• Simple, high level interface
• Blocking and non-blocking modes

Startup Scripts

•ipcontroller
– Used to start the Controller
– The Controller listens on a number of ports and

must be started first
•ipengine

– Used to start a single Engine after the Controller is
running

– This script can be started using mpirun
•ipcluster

– Starts one Controller and N Engines on localhost or
an ssh based cluster.

IPython1 RemoteController Interface

• Simple, intuitive way of working with the IPython
Engines

• Fine grained access to specific Engines
• Most general way of working with Engines
• New users should start here
• Designed with interactive usage of MPI

applications in mind

IPython1 + PyTrilinos

• If PyTrilinos and latest version of IPython1 are
installed, it will “Just Work.”

• The first time we attempted this, it took a few
minutes to work our how and when MPI_Init()

 would be called
• We have added a command line option to
ipengine

to handle all of this automatically

–

$ mpirun -n 4 ipengine

--mpi=pytrilinos

IPython1 Parallel Demo

IPython1 Resources

• IPython Parallel Computing webpage
– http://ipython.scipy.org/moin/Parallel_Computing

• IPython1 README and INSTALL files
• doc/examples directory in the IPython1 source

svn

co http://ipython.scipy.org/svn/ipython/ipython1/trunk ipython

PyTrilinos for Trilinos Release 8.0

• Extensive Teuchos.ParameterList support
– Python dictionary interoperability

• Workable Teuchos::RCP support
– Python object are automatically ref-counted
– Teuchos::RCP should be invisible to python

programmer
– Use cases where ref-counts do not sync

• NOX re-enabled
• Module for Anasazi package added
• Python help system for PyTrilinos now leverages

doxygen documentation

PyTrilinos for Trilinos Release 8.0

• PyTrilinos requires that Trilinos libraries be built
as shared

• Python-based build system that re-links object
files as shared (supported under Mac OS X and
Linux)
– Must be compiled as position-independent code

• Shared libraries can be built without building
PyTrilinos
–

configure …

--enable-shared …

– Shared libraries put in
BUILD/packages/PyTrilinos/shared

	Parallel Interactive Computing with PyTrilinos and IPython
	The History of Parallel PyTrilinos
	2007 Scientific Python Conference
	IPython
	IPython Demo
	Parallelism with IPython1
	IPython1 Architecture
	IPython Engine
	IPython Controller
	IPython Clients
	Startup Scripts
	IPython1 RemoteController Interface
	IPython1 + PyTrilinos
	IPython1 Parallel Demo
	IPython1 Resources
	PyTrilinos for Trilinos Release 8.0
	PyTrilinos for Trilinos Release 8.0

