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Abstract

This is the Final Report for an LDRD project whose purpose was to demonstrate
the parallel scalability of the spectral element method applied to a model of the
atmosphere, and to mature the model for inclusion into a production-level climate
system model. This atmospheric model is indeed highly scalable, achieving over 5
TFLOPS on Red Storm (pre-upgrade) running on almost 10,000 processors. Much of
the software engineering to integrate it with the Community Climate System Model
(CCSM) has been completed. The CCSM is a nation-wide climate modeling effort
sponsored by The National Science Foundation, the Department of Energy and the
National Aeronautics and Space Administration. Once this integration is completed,
it will make the spectral element model one of four atmospheric model options from
which researchers can choose when running CCSM.
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Summary

The purpose of this project is to demonstrate scalable performance of a global atmo-
spheric model on massively parallel computer architectures. Reliable climate mod-
eling is an increasingly important capability for social, economic and security policy
planning. It is also one of the most computationally intensive applications in sci-
ence. Of the different components that comprise a climate system model (atmosphere,
ocean, sea-ice and land, plus the coupler that ties them together), the atmosphere
consumes the greatest computational resources. Traditional atmosphere models based
on the spectral transform method have always vectorized well, albeit with a somewhat
limited granularity. On more general and less expensive distributed-memory systems,
this type of atmosphere model does not parallelize well, for several reasons: expensive
all-to-all transposes of data; Legendre transforms which do not scale linearly; and the
aforementioned granularity issue.

This project approached the scalability issue by collaborating with the National Cen-
ter for Atmospheric Research (NCAR) on a spectral element atmospheric model. In
this method, the surface of the earth is tiled with quadrilaterals, each of which is a
high-order finite element (typically 8 by 8). These elements define locally-supported
basis functions which eliminate the need for expensive data transposes, replacing them
with efficient edge communications. The Legendre transforms are replaced with scal-
able, piecewise polynomial computations, and the granularity limitation is greatly
reduced because the problem can be decomposed down to one element per processor.

The scalability properties of the spectral element method were known before the start
of the project. The purposes of the project were to demonstrate the model’s capa-
bilities at higher resolutions and at larger processor counts than had been achieved
before, and to help mature the model so that it could be adopted by the climate
modeling community as a component within the Community Climate System Model
(CCSM), a production-quality climate model maintained at NCAR. This will allow
the advantages of the spectral element dynamical core to be coupled to existing at-
mospheric physics parameterizations, ocean dynamical cores and physics parameteri-
zations, and sea-ice and land models, so that climatologists can better take advantage
of the terascale computers of today and the petascale computers of tomorrow.
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Nomenclature

CAM Community Atmosphere Model. The atmospheric component of the CCSM.
It supports a variety of dynamical cores that a user may choose from: two
spectral transform dynamical cores, one Eulerian and one semi-Lagrangian; and
a finite volume dynamical core. Work is underway to add the spectral element
dynamical core, which was the focus of this project.

CAM Physics A collection of sub-grid parameterizations within CAM that is shared
by all of the dynamical cores supported by CAM. These parameterizations in-
clude cloud physics, aerosols, chemistry, and radiation, to name but a few.

CCSM Community Climate System Model. This is the premier climate system
modeling effort in the U.S., sponsored by the National Science Foundation, the
Department of Energy and the National Aeronautical and Space Administra-
tion, and is administered at the National Center for Atmospheric Research. It
consists of four major components: an atmosphere model (CAM); an ocean
model (POP); a sea-ice model (CSIM); and a land model. These four com-
ponents are coupled together at their boundaries via flux conditions by a fifth
component known as the flux coupler.

Dycore Common abbreviation for “dynamical core.” A Dycore refers to the algo-
rithm responsible for solving the equations of motion in an atmosphere or ocean
model. Specifically, it refers to the Euler equations in spherical coordinates
with a central-pointing gravitational field and a Coriolis term. An atmosphere
or ocean model is comprised of its dycore and its physics modules.

Embarrassingly parallel is a term used to describe algorithms that can run on
multiple processors with little or no communication. This lack of communication
overhead results in a high degree of parallel efficiency and scalability.

Explicit algorithms march the solution for transient equations forward in time by
relating data at the new time step exclusively to data at previous time steps.
Explicit algorithms are characterized by highly efficient computations, but strict
stability restrictions, typically resulting in small time steps.

HOMME High-Order Multi-scale Modeling Environment. This is a follow-on to
SEAM developed in the Scientific Computing Division at NCAR. Special at-
tention was paid to efficient memory usage and parallel scalability in the devel-
opment of this code, and it is here where most new development is implemented.
HOMME is the code that was the focus of much of the collaboration for this
project and is in the process of being integrated with CAM.
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Implicit algorithms march the solution for transient equations forward in time by
solving the all data at the new time step simultaneously, via either linear or
nonlinear systems, depending on the problem. Implicit algorithms are charac-
terized by expensive computations, but usually have no stability restrictions,
typically resulting in large time steps that can be chosen purely on the basis on
accuracy.

Latitude describes the angular distance in spherical coordinates north or south of
the equator, which is 0 by definition. The north pole represents a latitude of
π/2 or 90◦, and the south pole is −π/2 or −90◦.

Longitude describes east-west angular distance in spherical coordinates. By con-
vention, the Greenwich meridian is defined to be zero, and eastward distances
are positive, while westward distances are negative.

NCAR National Center for Atmospheric Research. Located in Boulder, Colorado,
and primarily funded by the NSF, one of NCAR’s many responsibilities is ad-
ministering the CCSM, which is a collaborative effort with many other govern-
ment agencies, laboratories, institutions and universities.

Pole problem refers to a collection of problems that numerical methods have in
spherical coordinates at or near the poles. Terms like the curl are bounded, but
they can be the difference of terms that become unbounded as they approach
the poles. The form of spherical derivative operators can pollute the accuracy
of approximation techniques. Latitude-longitude grids are highly refined near
the poles, which can affect stability conditions and introduce high-frequency
oscillations. Methods based on the spherical harmonics address the pole prob-
lem “automatically” because the underlying basis functions are isotropic on the
sphere. Other methods must deal with the pole problem more explicitly, often
with alternate grids or filters that reduce the spectrum of the data near the
poles.

SEAM Spectral Element Atmosphere Model. The very first implementation of a
spectral element dynamical core for the global atmosphere was called SEAM.
It is still in use by certain researchers in the Climate and Global Dynamics
Division at NCAR for non-production studies and research.

Semi-implicit algorithms march the solution for transient equations forward in time
by treating linear terms implicitly and nonlinear terms explicitly, resulting in a
linear system to solve. Semi-implicit algorithms are characterized by computa-
tions that are less expensive than fully implicit, but with stability conditions less
restrictive than explicit, typically resulting in larger time steps than explicit.

STM Spectral Transform Method. In the STM, spherical coordinate data is rep-
resented by spherical harmonic coefficients. Linear operators can be applied
directly to this data. Nonlinear operators are applied by transforming the data

12



to a point-wise representation on a latitude-longitude grid, performing the op-
eration in “physical” space, and then transforming the data back to “spectral”
space. Aliasing errors from quadratic terms can be eliminated by truncating
the top third of the spectrum.
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Chapter 1

Introduction

Climate modeling has been a key application since the earliest days of supercomput-
ing. The very first Cray-1A supercomputer was installed at NCAR in 1974. At the
time, its computing resources were strained by a relatively low resolution, global at-
mosphere model [Oliger(1970)]. Today, much larger and faster computers are devoted
to climate modeling, but they are still strained by relatively modest resolution sys-
tem models that simulate the atmosphere, ocean, sea ice and much, much more. To
obtain resolutions that can give scientists meaningful predictions of regional climate
change, faster and larger capacity computational hardware will be required. Also
needed will be algorithms that utilize these machines more efficiently, by scaling to
tens, if not hundreds of thousands of processors. This scalability is the focus of this
LDRD project.

Background: The Spectral Transform Method

The atmosphere model developed for early vector processor architectures was the
spectral transform method [Machenhauer(1972)]. Numerical fields in such a model
are stored as multiple layers of two-dimensional, triangular truncations of spherical
harmonic coefficients. To perform nonlinear operations on such fields, they are trans-
formed to “physical” space, i.e. point-wise data on a latitude-longitude grid. The
results of these nonlinear operations are then transformed back to “spectral” space.
Aliasing errors are eliminated by use of a “two-thirds rule,” where the top third of
the spectral coefficients is truncated.

This approach is extremely efficient on a vector machine. Indeed, the Japanese Earth
Simulator, which sat atop the Top 500 list of the world’s fastest computers for an un-
precedented two and a half years, was designed in part to take advantage of the highly
vectorizable Fourier and Legendre transforms required by the spectral transform at-
mosphere model [Shingu(2002)]. However, massively parallel, distributed-memory ar-
chitectures are far more economic and applicable to a wider range of applications. The
next planned Japanese supercomputer is reported to be a more general commodity-
based machine.
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The spectral transform method is far less efficient on distributed memory computers.
Conceptually, a transform, from say physical space to spectral space, requires a fast
Fourier transform (FFT) in the longitude direction, followed by a Legendre transform
in the latitude direction. It is possible to decompose the data in one dimension so
that one of the transforms is completely on-processor, but then the other transform
would have to be distributed. A 2D decomposition, which is more scalable, would
require that both transforms be distributed. Alternatively, we can employ an all-to-
all data transposition between the transformation algorithms, so that all transforms
are computed on-processor. It is this last approach that is most efficient in almost
all computing regimes [Worley(1992)] [Walker(1992)].

Nevertheless, the data transpose communication operation represents a bottleneck in
the computations. It is very time-consuming compared to “local methods” that only
have to communicate edge data across processor domain boundaries. In addition
to the transpose problem, the Legendre transform takes up more and more of the
compute time as the resolution increases, because Legendre transforms do not scale
linearly.

Despite these drawbacks, the spectral transform method is still used today. One of
the reasons is that climate models are still run operationally at relatively modest res-
olutions, and so these inefficiencies are tolerable. Another reason is that the spectral
transform method can be run using larger time steps than other methods. This is
because the semi-implicit formulation, which treats all linear terms implicitly in the
time-stepping algorithm, has a less restrictive CFL stability condition. The semi-
implicit formulation requires the solution of a Helmholtz problem, which is trivial for
the spectral transform method because the spherical harmonics are the eigenfunctions
in spherical coordinates of the underlying Laplace operator. The matrix that needs
to be inverted is therefore diagonal and hence trivial. No other numerical method
has this property for semi-implicit time stepping.

The Community Climate System Model

Climate models have evolved considerably over the last several decades. Early climate
models were purely atmospheric models, with simple moisture, cloud and radiation
sub-grid parameterizations added. Various components and improvements have been
added over the years to this starting foundation. Development efforts have branched
apart and recombined. The problem of modeling the entire climate system is so large,
and requires such a breadth of expertise, that there is far more cooperation in the
field of climate modeling than there is competition.

In the U.S., this cooperation has resulted in the Community Climate System Model
(CCSM) [Kiehl(2004)], which is funded by the National Science Foundation (NSF),
the Department of Energy (DOE), and the National Aeronautics and Space Admin-
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istration (NASA). The CCSM is administered by NCAR, an NSF-sponsored research
center.

The CCSM is comprised of five components: an atmosphere model, an ocean model,
a sea-ice model, a land surface model, and a flux coupler that transfers boundary con-
dition data between the other components. These components are described briefly
below:

Atmosphere. The CCSM atmosphere component is called the Community Atmo-
sphere Model (CAM) [Collins(2004)], whose development is led by NCAR. CAM is
conceptually divided into two parts. The first is the dynamical core (dycore), which
is essentially the Euler equations in spherical coordinates with a central gravitational
field and a Coriolis term. The second part is the physics parameterizations, which
include just about everything else: solar radiation, moisture, clouds, aerosols, and
chemistry, to name just a few. Originally, CAM supported only an Eulerian spectral
transform dycore on a latitude-longitude grid. A second, optional dycore was added
that supported the semi-Lagrangian spectral transform paradigm on a lat-lon grid.
Prior to this project, a third optional dycore has also been added, a finite volume
dycore, also on a lat-lon grid.

Ocean. The CCSM ocean model is the Parallel Ocean Program (POP) [Smith(2002)],
developed at Los Alamos National Laboratory. POP supports a single finite volume
dycore on a “warped” lat-lon grid whose “north pole” has been transferred to Green-
land. It also supports a more limited set of parameterizations that model such things
as salinity and biomass.

Sea Ice. The CCSM sea-ice model is known as the Community Sea-Ice Model (CSIM)
[Briegleb(2004)], developed primarily at NCAR. Its purpose is to track the growth
and recession of ice in the polar regions of the earth’s oceans. Los Alamos also
develops a sea-ice model named CICE [Hunke(2006)], which is compatible with POP
and CCSM.

Land Surface. The CCSM land surface model is the Community Land Model (CLM)
[Oleson(2004)], which is a collaboration among many groups within NCAR. It simu-
lates the physical, chemical, and biological processes by which terrestrial ecosystems
interact with the climate across a variety of spatial and temporal scales.

Flux Coupler. The CCSM flux coupler [Kauffman(2004)] is developed at Argonne
National Laboratory. It computes boundary fluxes from state data from a given
component on a given grid distributed over a given processor partition, interpolates
the data to a different grid and communicates it to a different component on a different
processor partition. In this manner, sea surface heat flux is communicated from the
ocean to the atmosphere, precipitation is communicated from the atmosphere to the
land surface, etc.

17



The Community Atmosphere Model

Of all the CCSM components, the atmosphere consumes the greatest amount of
computing time. The ocean is similar in terms of memory usage, but the atmosphere
dominates the computations because the stability condition is more strict for the
atmosphere and the time step is much smaller. So, while all components must execute
in parallel, it is the efficiency of the atmosphere that is of prime importance to the
overall efficiency of the climate system model. Within CAM, the physics modules are
“embarrassingly parallel” and so scale without issue. The dycore, however, can have
severe scaling limitations, and it is the atmospheric dycore that is the focus of this
project.

Eulerian STM. The Eulerian STM [Machenhauer(1972)] was the first dycore imple-
mented in CAM, and is still used today. Atmospheric fields are represented by spher-
ical harmonic coefficients. Linear operators are applied directly to the coefficients.
Nonlinear operators are applied by transforming the data to a latitude-longitude grid,
performing the operation, and transforming the results back to spectral space. Time-
stepping is comprised of applying the appropriate linear and nonlinear operators of
the Eulerian form of the equations of motion to obtain the fields at the new time step.

Semi-Lagrangian STM. The semi-Lagrangian STM [Robert(1982)] achieves time-
stepping by following atmospheric “particles” over their trajectories through space.
Unlike full Lagrangian, the semi-Lagrangian method follows those particles that end
their trajectory at a given time step at the vertices of a lat-lon grid. A semi-Lagrange
solver must therefore “back out” the starting location of these particles, and their
properties are interpolated from the lat-lon data at the beginning of the time step.
This algorithm, combined with a semi-implicit formulation, results is a much longer
stable time step. It also introduces interpolation error to obtain the initial conditions
for the trajectories.

Finite Volume. The finite volume (FV) dycore [Lin(1997)], also know as Lin-Rood,
is a relatively recent addition. CAM had to be redesigned to become more modular
in order to accept such a different numerical method. The FV (currently) uses a
lat-lon grid, and time-stepping is achieved by relating flux conditions across cells.
Special filters have to be applied to address the collection of issues known as the
“pole problem.” While less accurate than a spectral method, the FV method does
have the advantage being locally conservative. The FV method allows for the use of
flux limiters, which suppress artificial oscillations in the solution variables. These are
important properties for tracers such as moisture, aerosols and chemistry, as well as
cloud physics.

18



Spectral Element Dynamical Cores

The spectral element method is a finite element method in which a high degree
spectral method is used within each element. The method provides spectral ac-
curacy while retaining both parallel efficiency and the geometric flexibility of un-
structured finite elements grids. The method has proven accurate and efficient for a
wide variety of geophysical problems, including global atmospheric circulation mod-
eling [Taylor(1997)] [Taylor(1998)] [Giraldo(2001)] [Thomas(2002)] [Giraldo(2004)]
[Fournier(2004)] [Thomas(2005)] ocean modeling [Haidvogel(1997)] [Iskandarani(2002)]
[Molcard(2002)] [Iskandarani(2003)] and planetary scale seismology [Komatitsch(1999)]
[Komatitsch(2002)]. The method has unsurpassed parallel performance; it was used
for earthquake modeling by the 2003 Gordon Bell Best Performance winner, running
on 1944 CPUs of the Earth Simulator [Komatitsch(2003)] and for climate modeling
by a 2002 Gordon Bell Award honorable mention, running on 2048 processors of an
IBM SP [Loft(2001)].

Our spectral element dynamical core solves the primitive equations using a hybrid η
pressure vertical coordinate system [Simmons(1981)], using the continuous Galerkin
spectral element discretization for the horizontal directions (the surface of the sphere),
and second order finite differences in the vertical direction [Fournier(2004)] [Thomas(2005)].
The spectral element method relies on quadrilateral elements. We use a subdivided
inscribed cube to generate quasi-isotropic tilings of the sphere with such elements.
An example mesh is shown in Fig. 1.1. To characterize the horizontal resolution of
these meshes, let M be the total number of elements and N be the number of poly-
nomials in each direction used within each element. In the figure, M = 384. The
spectral transforms performed within each element rely on an N × N grid and thus
the total horizontal resolution is specified by N × N × M . The number of nodes
along the equator is given by 4(M/6)1/2N , and the average equatorial grid spacing in
kilometers is given by 2.45× 104M−1/2N−1.

Using a spectral element discretization on the sphere has several advantages for global
climate modeling. First of all, handling the spherical geometry presents no problem
since the sphere can be tiled with quadrilateral elements of approximately the same
size, thus avoiding clustering points at the poles. Secondly, by using a local coordinate
system within each element, the singularities associated with spherical coordinates can
also be avoided. Additionally, for climate applications, the method can obtain the
accuracy of traditional spherical harmonics based models with only a slight increase
in the number of degrees of freedom [Taylor(1997)] [Thomas(2002)].

In what follows we present results from two models, SEAM and HOMME. SEAM is a
spectral element atmospheric model research code [Fournier(2004)]. Most of the algo-
rithms in SEAM have been re-implemented in NCAR’s High Order Multi-scale Mod-
eling Environment (HOMME). HOMME adds modern software engineering practices
in addition to many new features and algorithms, including advanced time stepping,
discontinuous Galerkin, adaptive mesh refinement and several domain decomposition
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strategies [Thomas(2005)] [St-Cyr(2004)] [St-Cyr(2005)] [Nair(2004)]. Here we only
use the simplest form of HOMME: explicit time stepping, a continuous Galerkin treat-
ment of the prognostic variables and quasi-isotropic conforming element meshes. In
this form, the numerical results of HOMME and SEAM are indistinguishable.
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Figure 1.1. An example spectral element grid for the
Earth. Continental outlines are shown for reference. The
grid is generated by projecting an inscribed cube onto the
surface, and then subdividing each of the 6 faces of the cube
into an 8 × 8 grid of elements. Typically each element uses
a degree 7 polynomial expansion. Finite differences are used
in the vertical direction (not shown).

21



22



Chapter 2

Parallel Scalability

Spectral element methods are well suited to modern cache-based parallel computers
for several reasons. First, the basic data structure in the method, the spectral ele-
ment, is naturally cache blocked. Secondly, due to the O(N3) cost of the spectral
transforms, the method has a very low ratio of communication to computation. Fi-
nally, the spectral element discretization allows for efficient two-dimensional domain
decomposition strategies.

We demonstrate this performance by presenting results for HOMME running on the
IBM BlueGene/L (up to 7776 processors) and ASCI Red (up to 8938 processors). We
use vertical resolutions from 20 to 100 levels, and horizontal resolutions from 156km
down to 10km. All cases use N = 8. For the benchmark problem, we use timings
from HOMME configured to run the Held-Suarez test [Held(1994)]. The Held-Suarez
tests were designed to allow for the inter-comparison of the climate produced by
different atmospheric dynamical cores. Results from SEAM and HOMME have been
previously reported [Taylor(1998)] [Thomas(2005)].

The Held-Suarez tests are also useful for benchmarking since they represent the entire
dynamical core of an atmospheric model such as CAM. Only the physics components
(sub-grid scale models of physical processes) in CAM are not represented. CAM
physics is column based, meaning the calculations are performed using only data from
the vertical column associated with each element. Using an element based domain
decomposition, all the column physics will be performed on processor and require
no additional communication. Thus the addition of physics can only improve the
parallel scalability of the dynamical core; however, the single processor performance
will be affected by the single processor performance of the column physics models.
One other difference between CAM and the Held-Suarez tests which can effect parallel
performance is that CAM contains additional constituents which must be advected
by the dynamical core. These prognostic variables will have an identical parallel
behavior as the prognostic variable for temperature, and thus they are represented
in the Held-Suarez test but going from one such variable to many such variables will
result in a proportional increase in the required CPU time.

These factors show that the time-to-solution from a Held-Suarez test problem can
provide a reasonable estimate of the time-to-solution for a full climate simulation.
For a given resolution, adding column physics and additional constituents may ac-
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tually increase the parallel scalability of the model and the number of floating point
operations per second. The time-to-solution will increase, but in the worst case only
proportional to the complexity of the column physics and number of additional con-
stituents. In typical climate simulations, this increase is a factor in the range of 1.2
to 2.

Cache Blocking

The elements in the spectral element method provide a natural cache blocking. By
way of example, consider the 64 bit data storage requirement for a typical 8 × 8
element with 20 vertical levels requires only 10 Kbytes of cache per variable. One
hundred such 3-D variables will fit into a typical 1 Mbyte data cache. If the data is
stored in memory so as to avoid cache conflicts, then all the computations performed
within an element can be done entirely in cache. This blocking is independent of
resolution since we can increase the resolution by simply using more elements. This
situation is unlike codes optimized for vector architecture, where the natural block
size and data access patterns grow with resolution. Thus a spectral element model
maintains good performance even at high resolutions.

Domain Decomposition

The most natural way to parallelize the spectral element method is to simply assign
several elements to each processor. Each element only needs information from adja-
cent elements, so the domain decomposition reduces to a standard graph partitioning
problem. To solve this problem, we use an algorithm based on space filling curves
[Dennis(2003)].

The resulting communication patterns are similar to finite difference/finite element
methods which parallelize with the same type of domain decomposition. Thus the
parallel efficiency of this method would be similar to these other methods, except
for the fact that the spectral element method involves computing high order deriva-
tives using spectral transforms instead of low order stencils. These computationally
intensive transforms are performed within each element and are localized to each
processor thus requiring no communication. The result is that for a wide range of
problem sizes, number of processors, and computer architectures, the parallel effi-
ciency remains above 80%, for parallel decompositions as fine as two elements per
processor, and reasonable efficiency is obtained at the finest decomposition of one
element per processor.
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HOMME on ASCI Red

We first present results from the ASCI-Red computer at Sandia National Laboratories.
ASCI-Red was the first of DOE’s Advanced Strategic Computing Initiative (ASCI)
machines. It has 4510 nodes in a mesh interconnect, each with two 333 MHz Pentium
II processors. In Fig. 2.1, we present the total MFLOPS obtained per processor at
several resolutions and processor counts. Each curve represents a fixed resolution,
so that the the total amount of work was kept constant while the processor count
was increased. Data for two resolutions includes parallel decompositions as fine as
one element per processor. As can be seen in the figure, all resolutions achieve good
scalability - better than 80% in all cases. In this range the performance fluctuates
between 30 and 40 MFLOPS per processor. The best performance obtained for each
resolution, along with the integration rate is given in Table 2.1.
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Figure 2.1. Performance of the HOMME dynamical core
(dry dynamics) benchmark runs on ASCI Red. Each curve
shows the performance for a fixed resolution as the number
of processors is increased.

ASCI Red was of interest at the time of this study because of Cray’s upcoming
Red Storm architecture. Red Storm was designed to have the same balance between
processor performance and inter-processor communications as ASCI Red, and thus
we expected to obtain very similar scalability results on Red Storm.
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Resolution Processors GFLOPS Simulated days/day
156km/26L 384 13 1,600
40km/50L 6,144 181 154
20km/70L 8,192 265 18

10km/100L 8,936 294 1.5

Table 2.1. HOMME dynamical core (dry dynamics) bench-
mark runs on ASCI-Red

HOMME on IBM BlueGene/L

Our benchmark runs for the IBM BlueGene/L system were run on systems at IBM
Watson and Rochester, on up to 7776 processors using one processor per node and
only using one of the floating-point pipelines. BlueGene/L uses a toroidal interconnect
and PowerPC processors. Sustained MFLOPS per processor are shown in Fig. 2.2,
for several resolutions and processor counts. Each curve represents a fixed resolution,
so that the the total amount of work was kept constant while the processor count
was increased. Data for two resolutions includes parallel decompositions as fine as
one element per processor. The best performance obtained for each resolution, along
with the integration rate is given in Table 2.2.
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Figure 2.2. Performance of the HOMME dynamical core
(dry and moist dynamics) benchmark runs on BlueGene/L.
Each curve shows the performance for a fixed resolution as
the number of processors is increased.
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Resolution Processors GFLOPS Simulated days/day
80km/20L 512 117 7,200
71km/20L 1,944 372 6,500†

35km/40L 7,776 1,320 1,100

Table 2.2. HOMME dynamical core benchmark runs on
BlueGene/L. The run denoted by a † included one prognostic
moisture variable.

BlueGene/L is of interest since IBM intends to build some very large systems, with
over 64,000 processors. Noting that the performance on the dry dynamics problem
is around 250 MFLOPS per processor even when running with as few as 2 elements
per processor, we can estimate a performance at 9.8km/100L on 49152 processors (2
elements per processor) to be 9.8 TFLOPS, thus allowing an integration rate of 50
simulated days per day.

HOMME on Red Storm

Red Storm, of course, is Cray’s Opteron-based supercomputer at Sandia National
Laboratories. Our benchmark runs were performed prior to the recent upgrade, when
Red Storm had 10,368 single-core 2.0 GHz AMD Opteron compute nodes and a 3D
mesh interconnect for a peak performance of 41.5 TFlops. Fig. 2.3 shows the total
MFLOPS at several resolutions and processor counts. For the most part, efficien-
cies are kept above 80%, with the exception of one- or two-element per processor
decompositions. Single processor performance is roughly 725 MFLOPS.

Table 2.3 shows the maximum GFLOPS rates and simulated days/day for each reso-
lution. At the maximum resolution on the maximum processor count, Red Storm is
achieving 36 days/day. By way of comparison, the Japanese Earth Simulator running
the significantly more expensive spherical harmonic model, requires 24TF to achieve
an integration rate of 57 model days per day, with 84% of the computations devoted
to the dynamical core.

Semi-implicit Results

The results shown thus far are for explicit time-stepping. HOMME also supports
semi-implicit time-stepping, in which the linear terms of the governing equations are
treated implicitly. This results in an increase in the maximum stable timestep by
a factor of 3-8. The drawback is that the each time step requires the solution of a
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Figure 2.3. Performance of the HOMME dynamical core
(dry dynamics) benchmark runs on Red Storm. Each curve
shows the performance for a fixed resolution as the number
of processors is increased.

Resolution Processors GFLOPS Simulated days/day
156km/L26 384 181 20,293
40km/L50 6,144 2,946 2,684
20km/L70 8,192 4,006 325

10km/L100 9,831 5,159 36

Table 2.3. HOMME dynamical core benchmark runs on
Red Storm.

Helmholtz system, which is not as efficient as explicit calculations. Thus, the semi-
implicit approach is faster than explicit only when the solver is efficient enough to
exploit the gain in time-step.

Typically, as you increase the resolution of a Helmholtz problem, you increase the
number of iterations to converge by a factor of O(h−2. This does not scale. For-
tunately, however, the diagonal term for the atmosphere equations is proportional
to ∆t2/h2 and because ∆t/h is held roughly constant in order to satisfy the CFL
condition, we find that the number of iterations required to converge is essentially
independent of resolution. Theoretically, the semi-implicit approach can scale to high
resolutions.

The method implemented in HOMME is the split semi-implicit scheme, analogous
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to what is used in ocean models. For an atmosphere with L levels, an L × L eigen-
system is solved as a preprocessing step. This eigensolution is used to represent
decoupled vertical modes. These modes can be solved independently, and most of
them converge very quickly, in say 3 iterations or fewer. To reduce communication
overhead, processor boundary data for all unconverged modes is packed together at
each iteration. Converged modes are then masked from the solver algorithm. The
longest-converging zeroth mode typically converges in less than 20 iterations. The
savings of this approach comes from all of the early-converging modes. The iter-
ative method employed is preconditioned conjugate gradient, specifically stabilized
bi-conjugate gradient with an optimized additive Schwarz preconditioners the details
can be found in [St-Cyr(2006)].

In practice, however, we see a failure-to-converge rate of about 4%. This phenomenon
is still being studied, but its effect is that the approach is still considered highly ex-
perimental. The experiments that follow use statistics from experimental runs to
determine the average number of iterations each mode takes to converge and then
hard-codes those iteration counts to obtain performance estimates assuming the al-
gorithm is one day stabilized to prevent the failures-to-converge.

Table 2.4 shows the various parameters used in our experiments to study semi-implicit
time-stepping. We ran Held-Suarez, and typically saw an increase by a factor of 5 for
the stable time step. These maximum stable time-steps were modified to durations
that divide evenly into 24 hours, which is a common practice in climate and weather
modeling. Thus, the ratio of semi-implicit to explicit times steps is not precisely
constant.

Ne h Levels Exp ∆t SI ∆t
(km) (sec) (sec)

8 156 26 75 400
16 80 26 35 200
32 40 50 20 100
64 20 70 10 50
128 10 100 5 30

Table 2.4. Semi-implicit Experiment Parameters. Ne is
the number of elements along an edge of the cubed sphere;
h is the average element length; “Exp” and “SI” refer to the
explicit and semi-implicit time steps, respectively.

Fig. 2.4 shows the timing results of our semi-implicit experiment, run on Sandia’s
Thunderbird computer. The plotted quantity is simulated days per day (or integra-
tion rate) and the results show a promising linear speedup with respect to number
of processors. The only real drop off is seen in the coarsest resolution when the
decomposition is reduced to two elements per processor.
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Figure 2.4. Semi-implicit Integration Rates. Each color
represents a constant resolution. Open circles represent semi-
implicit integration rates and closed circles represent explicit
integration rates.

Fig. 2.5 shows acceleration rates, defined as the semi-implicit integration rate di-
vided by the explicit integration rate. If this quantity ever falls below 1, then the
semi-implicit scheme is actually costing us efficiency. For the range of experiments
conducted here, the acceleration never drops below unity. We do see some volatility
in the accelerations, which relate to small deviations from linear in the previous Fig-
ure. Nevertheless, the accelerations are consistently above 2 and often above 3. If
the method can be made more stable for practical simulations, it will be a benefit to
the spectral element atmosphere model.
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Figure 2.5. Semi-implicit Accelerations. Each color rep-
resents a constant resolution. Acceleration is defined as the
semi-implicit integration rate divided by the explicit integra-
tion rate.
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Chapter 3

The Polar Vortex Problem

The stratospheric polar vortex is bounded by strong potential-vorticity gradients
which isolate polar air from lower latitudes. A phenomenon of major atmospheric-
research importance is the eventual mixing of these air masses, when the vortex is dis-
torted by breaking planetary-scale Rossby waves. This was the focus of [Polvani(2000)].
In addition to that study and those referenced therein, the importance of this phe-
nomenon is underscored by a number of recent studies of its various aspects, in
various journals. [Thompson(2000)] studied the positive feedbacks involving ozone
destruction and other phenomena that may delay polar-vortex breakdown and en-
hance spring ozone loss. [James(2000)] provided objective diagnostics of characteris-
tic winter polar-vortex displacements towards Europe or Canada, linked to transient
dynamically induced ozone mini-holes. Planetary Rossby-wave refraction was found
by [Limpasuvan(2000)] to link stratospheric polar-vortex strength to tropospheric
annular-mode variability. [Koh(2000)] evaluated the crucial choice of boundaries for
computing material transport across the polar-vortex edge. Finally, [Randall(2005)]
found that an “unusually strong upper stratospheric vortex . . . caused enhancements”
of NOx that led to “reductions in O3 of more than 60% in some cases”.

All these authors also cite numerous other examples of this topic’s importance. Here
we document a minimally complex model for the numerical simulation of polar-vortex
breakdown based on that presented in [Polvani(2000)], and then present results from
SEAM for several different resolutions up to 36km with 200 levels.

Initial Condition

Following [Polvani(2000)], our initial model state consists of a gradient-flow balanced
axisymmetric-vortex: at time t = 0, as a function of longitude λ, colatitude ϕ and
pressure p, let the horizontal wind vector

u(λ, ϕ, p) = u0(ϕ, p) ≡ a0Ω0u
0(ϕ, p)i,

the isobaric velocity ω(λ, ϕ, p) = 0, the surface pressure psfc(λ, ϕ) = 104Pa, the
temperature

T (λ, ϕ, p) = T 0(ϕ, p) ≡ T0 −
a2

0Ω
2
0

R0

∂Φ0

∂ln p
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and the geopotential
Φ(λ, ϕ, p) = g0zp + a2

0Ω
2
0Φ

0(ϕ, p),

where a0, Ω0 and g0 are the earth’s radius, angular frequency and gravity, i is the
longitudinal unit vector, T0 = g0H0/R0 = 239.14K is the isotherm for a scale height
H0 = 7km, R0 is the dry-air gas constant and zp ≡ H0 ln psfc/p is log-pressure height.
The nonlinear gradient-flow balance is

∂Φ0

∂ϕ
= −

(
2µ+ u0 tanϕ

)
u0,

where µ = sinϕ, so the complete initial state only depends on the dimensionless
velocity component u0, assuming

∫ 1

−1
Φ0(ϕ, p)dµ = 0.

Let us now describe the initial profile as a function of (ϕ, p). Observing equator-ward
from ϕ = π/2, we assume the absolute vorticity

ζ ≡ 2µ− ∂u cosϕ

∂µ
(3.1)

is initially positive, almost constant until the vortex-edge latitude ϕv ≡ 60◦, where
it decreases rapidly over a zone of width ∆ϕ ≡ 6◦, then again nearly constant until
the surf-zone edge ϕs ≡ 35◦, followed by cubic-sine decrease to zero at the equator,
and solid-body rotation for ϕ ≤ 0. We impose u0

z = 0, where subscript z denotes
evaluation at ϕ = ϕz ≡ 37◦ and any p. The equator-ward progression just described
is controlled by four vertical-structure coefficients cn(p) to be determined:

ζ0(ϕ, p) ≡


r′(µ)c1 + c2, µs ≤ µ,

2µc3 − 4µ3c4, 0 ≤ µ ≤ µs,

2M0
e µ, µ ≤ 0,

(3.2)

where the step-like function

r′(µ) ≡ 1

2
+

1

2
tanh

µ− µv

∆µ
, (3.3)

the specific absolute angular momentum from (3.1)

M(µ, p) ≡ 1− µ2 + u cosϕ =

∫ 1

µ

ζ(µ′)dµ′, (3.4)

where subscript e denotes evaluation at the equator ϕ = 0, subscripts s and v denote
evaluation at ϕs and ϕv, and ∆µ ≡ ∆ϕ cosϕv. The coefficients cn(p) are determined
as follows. From (3.2,3.4) one has

M0(µ, p) =


−r(µ)c1 + (1− µ)c2, µs ≤ µ,

M0
e − µ2c3 + µ4c4, 0 ≤ µ ≤ µs,

(1− µ2)M0
e , µ ≤ 0,

(3.5)
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where by (3.3) the hyperbolic ramp-like function

r(µ) ≡
∫ µ

1

r′(µ′)dµ′ =
µ− 1

2
+

∆µ

2

(
ln cosh

µ− µv

∆µ
− ln cosh

1− µv

∆µ

)
.

Since ϕv > ϕz > ϕs we may immediately solve a linear system to obtain

c2 =
M0

vrz −M0
z rv

(1− µv)rz − (1− µz)rv
,

c1 = [(1− µv)c2 −M0
v ]r−1

v .

Ensuring µ-continuity of (3.2,3.5) leads to another linear system with solution

c4 = µ−4
s (M0

e −M0
s )− 2−1µ−3

s ζ0
s ,

c3 = (2µs)
−1ζ0

s + 2µ2
sc4.

Observing that
M0

z = 1− µ2
z

and
M0

s = −rsc1 + (1− µs)c2,

it only remains to define a0Ω0u
0
e ≡ −20m s−1 in order to get M0

e from (3.4), and then

u0
v ≡ (1 + zp/ztop)u

0
e

in order to get M0
v from (3.4), where ztop is the model height. Finally, (3.4,3.5) yields

u0(ϕ, p), as shown in Fig. 3.1a.

The initial scaled potential-vorticity (Π) profile is shown in Fig. 3.1b. Π ≡ P (T, ζ)/P (T0, 2Ω0),
where

P (T, ζ) ≡
(

secϕ
∂v

∂p

∂

∂λ
− ∂u

∂p

∂

∂ϕ
− ζ

∂

∂p

)
θ(p, T )

approximates the Ertel potential vorticity in isobaric coordinates, θ(p, T ) ≡ (p0/p)
R0/cpT

is the potential temperature and p0 = 105Pa. In fact Π thus defined is identically the
SPV of [Polvani(2000), section 3].

Time-Dependent Forcing at the Bottom

The model is forced by setting Φ at the surface for all time equal to

Φsfc(λ, ϕ, t) =

{
Φmax cosλ

(
sin 9

2
ϕ
)2 (

1− e−t/τ
)
, 40◦< ϕ< 80◦,

0, otherwise,

with decay time τ = 3d and amplitude Φmax = g0× 800m. The forcing peaks at
ϕ = 60◦ = ϕv, and increases monotonically in time. The effect is to instigate upward-
propagating Rossby waves.
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Figure 3.1. Initial state profiles vs latitude ϕ (◦, ab-
scissa). (a) Zonal-wind isotachs (m s−1) vs log-pressure
height zp (km, ordinate). Contour interval is 10 m s−1 and
u(ϕ = 37◦, zp) = 0. (b) Isopleths of scaled potential vorticity
vs potential temperature θ (K, ordinate). Contour interval is
0.2 and Π(ϕ = 0, θ) = 0.
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Sponge Layer at the Top

Depending on ztop, spurious reflection may be prevented by adding the following
sponge-layer forcing near the model top, which amounts to Rayleigh damping of u
and Newton damping of T :

∂(u, T )

∂t

∣∣∣∣
sl

= ν · (u0 − u, T 0 − T ), (3.6)

where the damping coefficient

ν ≡


1

2
+

1

2
tanh

zp − z̄sl

∆z
, zsl < ztop,

0, zsl ≥ ztop,
(3.7)

z̄sl ≡ 2−1(zsl + ztop), ∆z ≡ 3
10

(ztop − zsl) and zsl = 45km.

Results

Using SEAM, we were able to carry out the polar-vortex simulation at several resolu-
tions, up to 36km with 200 levels. The highest resolution required ≈ 105 time steps on
≈ 108 collocation points in ≈ 2 wall-clock days on 256 IBM SP RS/6000 processors.
The Π isosurfaces from that run are shown in in Fig. 3.2. They indicate the com-
plex dynamical features of the polar vortex: a primary Π “tongue,” succumbing to a
secondary instability, leading to a roll-up into a ring of five or six smaller sub-vortices.

We look at the convergence question systematically, as shown in Fig. 3.3. It appears
that at moderate horizontal resolution of 156km, some additional Π structure is re-
solved in increasing from 50 to 100 levels (Fig. 3.3a-b), but not as much, from 100 to
200 levels (Fig. 3.3b-c). At the higher horizontal resolution of 70km, the sub-vortices
are much better resolved for 100 levels, with little change at 200 levels (Fig. 3.3d-f).
Increasing the horizontal resolution to 36km at 200 levels (Fig. 3.3g) produces mainly
small and qualitative changes, and only in the details, not in the overall simulation.
The problem appears to have converged w.r.t. horizontal and vertical resolution.

The precise dissipation and filtering were different for all runs, but for each run were
empirically minimized while sufficient to stabilize the simulation. That is, we attempt
to investigate the inviscid limit. This differs from other convergence studies in which
dissipation and filtering are fixed, and only resolution is varied.

To investigate convergence under mesh refinement more systematically, we consider an
the isentropic Π-tongue-tip position diagnostic. This may be quantified as the point
xmax(θ, t) of maximum angular change β(x) of the Π = 1 contour in stereographic
projection coordinates
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t = 13 days

t = 16 days

t = 17 days

t = 18 days

t = 19 days

t = 20 days

Figure 3.2. Isosurfaces of scaled potential vorticity Π= 1
for the 36km run. Horizontal coordinates have been stereo-
graphically projected (3.8), and there are 22 vertical levels
θl = 102/7T0 exp(2.5 l+3/2

49 ). View is towards stereographic
origin and θ1 =524K, from λ =110◦W, elevation 40◦. Top
plane shows contours of Π > 1 on θ22 =1530K.
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(a)
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(c)

(d)

(e)

(f)

(g)

Figure 3.3. Stereographic projection in the the θ =1500K
surface of Π(λ, ϕ) contours from −0.3 to 1.3 by 0.1, at t =20d.
Values below 0.2 are dark gray and above 0.8 are white. Res-
olutions (a) 156km/50L, (b) 156km/100L, (c) 156km/200L;
(d-f) as in (a-c) but for 70km; (g) as in (f) but for 36km.
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x ≡ tan(π/4− ϕ/2)

[
cosλ
sinλ

]
. (3.8)

The diagnostic involves computing the L tangent vectors tj along the L points of
each contour:

tj ≡ ∆


xj, j = 1,

(xj + xj−1)/2, j = 2, · · ·L
xj−1, j = L+ 1,

where ∆sj ≡ sj+1 − sj. From the tj one computes the angular change

β(xj) ≡ arccos t̂j · t̂j+1 ≤ β(xmax(θ, t)), (3.9)

where â ≡ a/|a|. This is illustrated in Fig. 3.4.

The area A(θ, t) enclosed by values Π ≥ 1 evolves with a qualitatively similar pattern
as resolution is increased, as shown in Fig. 3.5. This is a good measure of vortex
erosion, as discussed in further detail by [Polvani(2000)]. We estimated A(θ, t) by
summing over northern-hemisphere points with Π(λ, ϕ, θ, t) > 1:

A(θ, t) =
2π

Nλ

Nϕ∑
m=1

∆ sinϕ+
m

Nλ−1∑
l=0

{
1, Π(λl, ϕm, θ, t) > 1,

0, Π(λl, ϕm, θ, t) ≤ 1,
(3.10)

where λl ≡ (2N−1
λ l − 1)π, ϕm ≡ (2Nϕ)−1mπ and ϕ+

m ≡ ϕm (m = 1, · · ·Nϕ), 2ϕm −
ϕm−1 (m = Nϕ + 1).

As an indication of convergence as resolution is increased, the ratio

s36km/s70km − 1

s70km/s156km − 1

for s = A(θ, t) stayed below 0.35 for all θ in Fig. 3.5, averaged over t ∈ [0, 12]d, and
was usually much smaller.
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Figure 3.4. Π =1 contours, for t ∈ {5, 7, 9, 11}d (light
gray to black). Diamonds indicate xmax(θ, t) (Eq. 3.9). (a-
d) Descending levels θ = 3000, 2500, 2000, 1500K for 156km
resolution. (e-h) As (a-d) but for 70km. (i-l) As (a-d) but for
36km.
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Figure 3.5. Horizontal vortex area A(θ, t) (3.10) vs t (d,
abscissa) for (a) θ = 3000, (b) 2500, (c) 2000, (d) 1500K.
Resolutions are 156km/50L (light gray), 70km/100L (gray)
and 36km/200L (dark gray).
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Chapter 4

Triangular Spectral Elements

The spectral element method applied to the atmosphere greatly enhances our ability
to run high-resolution simulations. But it also provides the advantage of unstructured
grids, which in turn allow for statically or adaptively refined grids. In theory, these
refinements could be in regions of interest, around phenomena of interest such as
hurricanes, or for higher fidelity in the vicinity of sea coasts or mountain ranges.
Some of these applications are best addressed with triangular elements. However, the
classic spectral element method was designed for, and took advantage of, quadrilateral
elements. This chapter discusses work done under this LDRD project that extends
spectral element theory to triangular grids. which would be an enabling technology
for refined grid applications.

Finite element methods were initially applied to self-adjoint operators (e.g., elliptic
equations) but eventually found widespread use in non-self-adjoint operators such
as those arising from hyperbolic equations. For many applications especially those
having smooth solutions (i.e., infinitely differentiable) it is far more efficient to use
high-order methods instead of low-order ones. On quadrilateral elements, the high-
order accuracy is obtained by using the nodal polynomial basis generated from a
tensor product of the Legendre-Gauss-Lobatto (LGL) points; these points have both
good polynomial interpolation and integration (cubature) properties. This approach
was introduced by Patera [Patera(1984)] and dubbed the spectral element method.

The importance of the LGL points to the diagonal mass matrix spectral element
method (DMM SE) cannot be understated. In the square, a (N +1)× (N +1) tensor
product of LGL points has a near optimal Lebesgue constant for the polynomial space
QN = span{ξnηm,m, n ≤ N}. This small Lebesgue constant means the LGL points
generate a well conditioned nodal basis forQN . By nodal basis, we mean the Lagrange
interpolating polynomials associated with the LGL points; these basis functions are
also known as cardinal functions. This nodal basis naturally separates into vertex,
edge and interior modes, and can be used in a standard high p finite element method
[Solin(2003)]. In addition, the LGL points which interpolate QN have a quadrature
formula (cubature in more than one dimension) which will exactly integrate all poly-
nomials in Q2N−1. The inner products which appear in the mass matrix of such a
formulation will be polynomials of up to degree 2N . Thus a high-quality approxima-
tion of these inner products (although not exact) can be obtained by evaluating the
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integrals using the LGL cubature. Combining this cubature approximation with a
nodal basis yields an accurate method with a diagonal mass matrix.

Unfortunately, points analogous to the LGL points do not appear to exist for the
triangle. Thus spectral element methods in triangles have focused on two differ-
ent approaches. In the first approach, a more traditional basis of vertex, edge
and interior modes is used to construct C0 test functions, and cubature formu-
las for the triangle are used to exactly evaluate the resultant inner products (see
[Sherwin(1995)]); this approach results in a modal triangular spectral element method.
In the second approach, a nodal basis is constructed using nodal sets in the tri-
angle with a small Lebesgue constant. These points must be found numerically
(see [Hesthaven(1998)] [Taylor(2000)]). They can then be coupled with exact cu-
bature formulas, resulting in a nodal space approximation where two different sets
of points are used for interpolation (Fekete points) and integration (Gauss points)
[Warburton(2000)] [Giraldo(2005)]); this approach results in a nodal triangular spec-
tral element method. Both the modal and nodal high-order triangular finite element
approaches yield exponential (or spectral) convergence and for this reason are known
as either spectral elements or spectral/hp elements. The difficulty that these methods
face is that they both require the inversion of a sparse global mass matrix because the
interpolation and integration points are not co-located as in the quadrilateral case.
Thus these two triangle-based approaches cannot quite compete in terms of efficiency
with quadrilateral-based spectral elements.

For this reason some attempts have been made to construct triangular spectral ele-
ment (TSE) methods with diagonal mass matrices (DMM) [Cohen(2001)] [Taylor(2000b)]
[Helenbrook(2004)]. The reason for developing triangular high-order methods is due
to the triangle (2-simplex) being much more geometrically flexible than quadrilaterals
for constructing grids especially for complex domains. In the past, to make triangular
finite element methods more efficient mass lumping had been used which, as pointed
out by Cohen et al. [Cohen(2001)], is related to seeking co-located interpolation and
integration points. However, such points for the triangle are not very easy to derive.
Cohen et al. [Cohen(1995)] obtained points for degree N = 2 and N = 3 in the trian-
gle by enriching the polynomial space with additional interior modes that vanish at
the edges and vertices of the elements and increase the cubature accuracy. Following
similar ideas Mulder [Mulder(2001)] obtained points of degree N = 4 and N = 5. Be-
cause these points are constructed with integration accuracy in mind we refer to them
as cubature points ; we generalize the approach for deriving these cubature points to
re-derive the sets N = 1, ..., 5 and derive two new sets N = 6 and N = 7 keeping in
mind that higher degree sets can be achieved with this approach. The main point
of this paper, however, is to show how to build numerical models for various partial
differential equations using these cubature points.
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Spatial Discretization

In this section we describe the spatial discretization of the equations by the DMM TSE
method including: the derivation of the cubature points, the choice of basis functions,
and the Vandermonde matrix used for filtering. However, before discussing these
issues let us first review a few relevant points concerning interpolation and cubature.

Interpolation in the Reference Element

We start by giving some definitions and our notation in the reference element T . Let
z = (ξ, η) be a point in R2 and let T be the right triangle given by

T = {(ξ, η) | − 1 ≤ ξ, η ≤ 1; ξ + η ≤ 0}.

Let PN denote the traditional space of all polynomials of degree ≤ N ,

PN = span{ξnηm,m+ n ≤ N}.

Here, following [Cohen(2001)] we will also be working in an augmented space of
polynomials denoted by PN,M . To construct this space, we first let P0

N denote the
space spanned by the interior modes,

P0
N = {f ∈ PN | f(z) = 0 ∀z ∈ ∂T}

where ∂T is the boundary of T . The augmented space PN,M is then given by adding
interior modes to the space PN ,

PN,M = PN ∪ P0
(N+M)

for M ≥ 0. Thus PN,M is the space of polynomials up to at most degree N along the
boundary and up to degree N +M in the interior. Note that PN = PN,0 and

PN ⊂ PN,M ⊂ P(N+M).

Also, dimPN = (N + 1)(N + 2)/2 and, for N ≥ 3, dimPN,M = dimPN +M(N − 3) +
(M + 1)/2.

Now consider a set of K points in the triangle T , {zi = (ξi, ηi), i = 1, . . . , K}, with
K = dimPN,M . If the points are non-degenerate, the nodal basis for PN,M can be
defined uniquely as the cardinal functions in PN,M which satisfy

ψi(z) =
1, ifz = zi

0, ifz = zj, j 6= i.
(4.1)

The nodal basis is directly related to interpolation, since for an arbitrary function q
the interpolant I(q) ∈ PN,M is given by

I(q) =
K∑

i=1

q(zi)ψi(z)
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where I(q)(zi) = q(zi). The quality of the interpolation operator (and thus the nodal
basis) for a given space and set of points is usually measured by the Lebesgue constant
‖I‖ (the L∞-norm of the interpolation operator).

Cubature in the Reference Element

Now we turn to the cubature properties of the points zi. A cubature rule for these
points and weights wi is of strength d if and only if∫

T

g =
K∑

i=1

wig(zi) ∀g ∈ Pd. (4.2)

Any set of K = dimPN,M non-degenerate points {zi} will have a cubature rule of at
least strength N by using the generalized Newton-Cotes weights,

wi =

∫
T

ψi.

Because of Eq. (4.1), this choice gives a quadrature rule that exactly integrates the
cardinal functions ψi. Since these functions are a basis for PN,M the cubature rule is
exact for all g ∈ PN,M and thus for all g ∈ PN and so the cubature rule is at least
of strength N . However, for some point sets, the Newton-Cotes quadrature formula
will integrate a larger space and the cubature rule can be of strength 2N or higher.

As mentioned in the introduction, for the 1-simplex and its tensor products, the
LGL points of degree N are both optimal interpolation and cubature points. Thus
a highly accurate method can be developed which results in a diagonal mass matrix
since the interpolation and integration points are co-located; having a diagonal mass
matrix is important for achieving efficiency. On the 2-simplex such points have not
yet been found and thus far one must be content to choose either good interpolation
or integration but not both.

It should be noted that in previous works the Fekete points have been used as
integration points which then results in a diagonal mass matrix [Taylor(2000b)]
[Komatitsch(1998)]; however, the cubature rule for Fekete points of degree N is only
of strength N , and thus using these cubature points is a poor approximation to the
degree 2N inner products which appear in the integral formulation of the equations.
For some problems, cubature of strength N is insufficient to achieve exponential con-
vergence. The fact that the interpolation and integration points are co-located means
that the mass matrix will be diagonal and thereby will be trivial to invert; a non-
diagonal mass matrix has been a thorn in the side of triangular spectral element
methods and is the main reason why triangles have not been able to compete with
quadrilaterals in terms of efficiency.

From this discussion it seems logical to assume that to get around the current dilemma
requires the construction of a new set of points for the triangle that have cubature
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strength of close to 2N while having reasonably low Lebesgue constants. In the next
section we describe the approach used for constructing points that satisfy both of
these two criteria. These points offer a similar accuracy to the Fekete-Gauss method
while having the attractive property of the Fekete points, that is, a diagonal mass
matrix.

Computing Cubature Points

Finding points with optimal cubature properties has been extensively studied inde-
pendently of spectral element applications and has a long history of both theoretical
and numerical development. For a recent review, see [Cools(1993)] [Lyness(1994)]
[Cools(1997)] and [Cools(1999)]. An on-line database containing many of the best
known quadrature formulas is described in [Cools(2003)]. One successful approach
for numerically finding quadrature formulas dates to [Lyness(1975)]. A generalized
version was used recently in [Wandzura(2003)]. Newton’s method is used to solve the
nonlinear system of algebraic equations for the quadrature weights and locations of
the points. Symmetry is used to reduce the complexity of the problem. The complex-
ity can be further reduced with a cardinal function based algorithm [Taylor(2006)].

If one consults the database and the newest numerical results in the above references,
it appears that cubature points of degree N with strength 2N or even 2N − 1 do
not exist in T . Furthermore, the best cubature formulas for T do not have sufficient
points (if any) on the boundary of T . If a set of cubature points will also be used to
construct the nodal basis in the space PN,M there must be N + 1 points along each
edge of T . This is because the nodal basis must generate vertex, edge and interior
modes, and the interior modes must be uniformly zero on ∂T (this is critical for the
construction of C0 approximations across element boundaries). If a cardinal function
ψi ∈ PN,M is zero on N + 1 points on an edge of T then ψi(z) = 0 for any point z on
that edge. This is because the restriction of any function in PN,M to that edge is a
polynomial of degree N . Thus any ψi for zi in the interior of T is automatically an
interior mode.

Since the goal of achieving a cubature formula using points which interpolate PN

and are of strength 2N − 1 is not achievable, we thus follow the ideas first put forth
by Cohen et al. [Cohen(1995)] [Cohen(2001)] and Mulder [Mulder(2001)]. Instead
of working in PN , we use the enriched space PN,M with M > 0. A point set which
can interpolate PN,M necessarily contains more points than those for PN . Thus there
are more degrees of freedom which can be used to satisfy the system of cubature
equations given in Eq. (4.2). The resulting points, which we call PN,M cubature
points, are tabulated and compared against the two point sets used in the Fekete-
Gauss method in Table 4.1. The cubature points for N = 2 and N = 3 are due to
Cohen et al. [Cohen(1995)] [Cohen(2001)] and degrees N = 4 and N = 5 are due to
Mulder [Mulder(2001)].
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To extend these results, we used the cardinal function cubature algorithm of [Taylor(2006)].
Straightforward modifications were required, first to work with interpolation points
for PN,M instead of PN , and second to impose that there be N + 1 points along each
edge of T (for a total of 3N points along the perimeter). We were able to reproduce
the previously computed results for degrees N ≤ 5 along with the two new degrees
N = 6 and N = 7. In fact, higher degrees of N for either triangles or tetrahedra are
achievable with this procedure.

Fekete-Gauss in PN Cubature in PN,M

N K K ′ d ‖ I ‖ N M K = K ′ d ‖ I ‖
1 3 3 2 1.00 1 0 3 1 1.00
2 6 6 4 1.67 2 1 7 3 1.45
3 10 12 6 2.11 3 1 12 5 2.21
4 15 16 8 2.58 4 1 18 7 3.75
5 21 25 10 3.19 5 2 30 10 5.23
6 28 36 12 4.08 6 3 46 12 7.40
7 36 46 14 4.78 7 3 51 14 7.50

Table 4.1. Properties of the cubature points and the points
used in the Fekete-Gauss method. N and M determine the
polynomial space PN,M , K is the number of interpolation
points, K ′ the number of integration points, d the strength
of the integration points and ‖ I ‖ is the Lebesgue constant
of the interpolation points.

Table 4.1 shows the number of interpolation points, K, integration points, K ′, and
the Lebesgue constant, ‖ I ‖, for both the Fekete-Gauss and cubature points as a
function of the polynomial degree, N . The first thing to notice about these two sets
of points is that the Fekete-Gauss points have superior Lebesgue constants than the
cubature points. However, this should not be surprising since the Fekete points are
constructed in order to minimize interpolation error and the Lebesgue constant is a
measure of the quality of the points to achieve good interpolation (a lower Lebesgue
constant implies better interpolation).

Evaluating the Nodal Basis Functions

To define the local operators which shall be used to construct the global approximation
of the solution we begin by decomposing the domain Ω into Ne non-overlapping
triangular elements Ωe such that

Ω =
Ne⋃
e=1

Ωe.
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We then further map the arbitrary triangles Ωe into the reference right triangle T .
To perform differentiation and integration operations, we introduce the nonsingular
mapping x = Ψ(ξ) which defines a transformation from the physical Cartesian coor-
dinate system, x, within each triangle Ωe to a local reference coordinate system, ξ,
in the reference right triangle T (see [Giraldo(2005)] for details on this mapping for
curved elements in R3).

Let us now represent the local element-wise solution q by its nodal expansion in PN,M

as

q(ξ) =
K∑

k=1

q(ξk)ψk(ξ)

where K = dimPN,M and the nodal basis functions ψk are defined as in Eq. (4.1). For
the points (ξi, ηj) we choose the newly derived cubature points which, while trivial to
evaluate nodal basis functions, complicate any other operation such as the evaluation
of their derivatives. Here we follow [Taylor(2000)] and represent the nodal basis
functions in terms of the Proriol polynomials [Proriol(1957)] [Dubiner(1991)] which
in T are an orthogonal basis for PN,0. Stable recurrence relations which can be used
to evaluate these polynomials and their derivatives are given in [Karniadakis(1999)].
Note that these polynomials are traditionally denoted with a double index (m,n)
representing the top degree in ξ and η. But here we use a single index and denote
them by ϕi, i = 1, . . . , dimPN . To generate an easily computable basis for PN,M

we need to add additional basis functions for the interior modes in PN,M which are
not in PN . For these polynomials we use the formulas given in [Karniadakis(1999)]
[Solin(2003)], and we denote them by ϕi, i = (dimPN + 1), . . . , K.

Filtering the High-Frequency Waves

As with most high-order methods, when solving non-linear problems some filtering
is needed to control the accumulation of aliasing errors. The ability to selectively
filter only the highest wave numbers is an advantage of the spectral element method.
However it does require that we use an expansion in only orthogonal Proriol polyno-
mials, since a nodal expansion or an expansion that involves interior modes will not
be orthogonal and thus not isolate the high frequency content to only the high wave
number modes.

Thus to implement filters, we need to compute the expansion of the local element-
wise solution q in terms of only orthogonal Proriol polynomials. In order to prevent
confusion with the augmented basis for PN,M , here we denote the basis for P(N+M)

by gi, i = 1, . . . , K1, where K1 = dimP(N+M).

Since q ∈ PN,M ⊂ P(N+M), q has a unique expansion in terms of g. Denoting this
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expansion by

q(ξi, ηi) =
K∑

k=1

q̃kRi,k (4.3)

where q̃k are the Proriol coefficients of q and R is the rectangular Vandermonde matrix
for the basis g, allows us to define the K ×K1 rectangular Vandermonde matrix R
by

Ri,k = gk(ξi, ηi).

Note that the appropriate right inverse of R for filtering is constructed as follows:
given the set of point values q(ξi, ηi), the expansion in terms of ϕ (the basis for
PN,M) can be computed by applying V −1, the inverse of the Vandermonde matrix.
This polynomial is in P(N+M) and thus has a unique expansion in terms of g (the
basis for P(N+M)), and so we have a mapping from the set of point values q(ξi, ηi)
to the expansion coefficients q̃; let us denote this map by Rr. Applying Eq. (4.3) to
expansion coefficients computed with Rr must recover the original grid point values,
and thus RRr = I where I is the identity matrix. In matrix form, we now write
Eq. (4.3) as

q = R q̃ q̃ = Rr q. (4.4)

We can now apply filters to q directly to its Proriol coefficients in P(N+M). There are
many possible filters, but here, based on past experience [Taylor(1997)] [Giraldo(2005)],
we choose the Boyd-Vandeven transfer function [Boyd(1996)] which we denote by Λ.
Applying the filter to the amplitudes and then transforming to nodal (physical) space
is achieved in the following matrix-vector multiply operation

qF = F q

where

F = R Λ Rr (4.5)

is the K ×K filter matrix and is applied every time-step at full strength. However,
in the original Boyd-Vandeven filter only the highest modes (polynomials of degree
N+M) are completely annihilated and this may be too severe for either quadrilateral
spectral elements or exact integration triangular spectral elements. Thus the issue
with the new cubature points is how to view the approximation space which these
points span. For example, should one take the degree to be the degree of the edge
modes N , or the degree of the interior modes, N + M? Let us denote the order of
the space which the filter acts on as NF . In Table 4.2 we show the values used for
filtering the cubature points. As an example, for P7,3 the interpolation functions of
the cubature points contain some degree 10 (N+M) modes. The filter then acts on all
the degree 9 and 10 modes. Unfortunately, we currently have no theory to support
our filter choices; the values listed in Table 4.2 were found experimentally but they
appear to work for a variety of applications.
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Filtering for PN,M

N M K NF

1 0 3 2
2 1 7 3
3 1 12 4
4 1 18 5
5 2 30 6
6 3 46 8
7 3 51 8

Table 4.2. The indices N,M for the polynomial space, the
number of cubature points K, and the highest mode unaf-
fected by the filter, NF .

Integration and Local Element-wise Operators

In order to complete the discussion of the local element-wise operations required to
construct discrete spectral element operators we must lastly describe the integration
procedure required by the weak formulation of all Galerkin methods. For any two
functions f and g the integration I proceeds as follows

I[f, g] =

∫
Ωe

f(x) g(x)dx =
K∑

i=1

wi | J(ξi) | f(ξi) g(ξi) (4.6)

where w are the cubature weights and J the Jacobians of the transformation from
physical space to the local space of the reference element. Note that for straight-edged
triangles J and all other metric terms are constant but not so for curved elements.

To simplify the description of the numerical algorithm, let us define the following
local element operators: let

M e
ij =

∫
Ωe

ψi(x)ψj(x)dx, (4.7)

Le
ij =

∫
Ωe

gradψi(x) · gradψj(x)dx, (4.8)

De
ij =

∫
Ωe

ψi(x)∇ψj(x)dx, (4.9)

represent the mass, Laplacian, and differentiation matrices where i, j = 1, . . . , K.

Using Eq. (4.6) allows us to rewrite Eqs. (4.7), (4.8), and (4.9) as

M e
ij = wi | J(ξi) | δij, (4.10)
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Le
ij =

K∑
i=1

wi | J(ξi) | gradψi(ξi) · gradψj(ξi), (4.11)

De
ij = wi | J(ξi) | ∇ψj(ξi), (4.12)

where δij is the Kronecker delta function. As Eq. (4.10) shows, having the interpo-
lation and integration points, ξi, co-located results in the mass matrix, M e, being
diagonal which significantly simplifies the construction of the global matrix problem
and its solution.

Formulation of the Method

We follow the generalized diagonal mass matrix spectral element formulation outlined
in [Taylor(2000b)]. This method is based directly on the original DMM spectral
element method proposed by [Maday(1987)] except that the domain is decomposed
into triangular instead of quadrilateral elements and we are working in the space
PN,M . The method proceeds as follows: by piecing together appropriate nodal basis
functions in neighboring elements, a set of global functions can be constructed that are
C0 and piecewise polynomial. These global functions are used as the test functions
in the weak form of the equations of interest, and the unknowns are expanded in
terms of these global functions. The resultant integral equations are decomposed as
a sum of integrals over each element. Finally, the quadrature rule associated with the
points used to construct the cardinal function basis is used to evaluate each integral.
Because of the nodal nature of the global functions, this results in much simplification,
including giving a diagonal mass matrix.

The result is a method which can satisfy the equations globally by simply summing
the local element matrices, Eqs. (4.10), (4.11), and (4.12), to form their global repre-
sentation [Maday(1987)]. This summation procedure is known as the global assembly
or direct stiffness summation. Let us represent this direct stiffness summation (DSS)
procedure by the summation operator

Ne∧
e=1

with the mapping (i, e) −→ (I) where i = 1, . . . , K are the local element grid points,
e = 1, . . . , Ne are the spectral elements covering the global domain, and I = 1, . . . , Np

are the global grid points. Applying the DSS operator to the local element matrices
results in the following global matrices:

M =
Ne∧
e=1

M e, L =
Ne∧
e=1

Le, D =
Ne∧
e=1

De

where M , L, and D are matrices of dimension Np×Np and M is diagonal and thereby
trivial to invert.
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Poisson Equation on the Plane

For the Poisson equation
∇2q = f (4.13)

we define its variational statement as: find q ∈ H1
0 (Ω) ∀ ψ ∈ H1 such that

−Lq = f (4.14)

where H1
0 (Ω) is the space of all functions (with zero Dirichlet boundary conditions)

with functions and first derivatives belonging to L2(Ω) - the space of all functions
that are square integrable over Ω. The domain used for this test is x ∈ [0, 1]× [0, 1].

Advection Equation on the Sphere

Similarly, for the advection equation on the sphere

∂q

∂t
+ u · grad q = 0 (4.15)

we define the variational statement as: find q ∈ H1(Ω) ∀ ψ ∈ H1 such that

∂q

∂t
= −M−1uT Dq. (4.16)

On the sphere, however, no additional boundary conditions are required other than
periodicity which is satisfied by the connectivity of the grid.

Shallow Water Equations on the Sphere

The shallow water equations on the sphere are

∂q

∂t
= S(q) (4.17)

S(q) = −
(

grad ·(φu)
u · grad u + f (x× u) + gradφ+ µx

)
(4.18)

where q = (φ,uT )T , the nabla operator is defined as ∇ = (∂x, ∂y, ∂z)
T , φ is the

geopotential height (φ = gh where g is the gravitational constant and h is the vertical
height of the fluid), u = (u, v, w)T is the Cartesian wind velocity vector, f = 2ωz

a
is

the Coriolis parameter and (ω, a) represent the rotation of the earth and its radius,
respectively.

The term µx, where x = (x, y, z)T is the position vector of the grid points, is a
fictitious force introduced to constrain the fluid particles to remain on the surface of
the sphere (see [Giraldo(2005)] for details). Note that this equation set represents
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an initial value problem with no boundary conditions; the only condition required is
that of periodicity which is imposed by the geometry of the spherical domain.

The variational statement of the problem is: find (φ,uT )T ∈ H1(Ω) ∀ ψ ∈ H1 such
that

∂φ

∂t
= −M−1DT (φu) (4.19)

∂u

∂t
= −M−1uT Du− f (x× u)−M−1Dφ− µx (4.20)

where for φ and u we choose the polynomial space PN,M -PN,M .

54



Chapter 5

Conclusions

The spectral element method is known to perform well on parallel computers. This
performance is maintained for a spectral element atmospheric model on very large,
previously unattained, processor counts. The parallel efficiency remains between 70–
80%, for parallel decompositions as fine as one element per processor and for all
problem sizes and processor counts. These results give evidence that the massively
parallel systems being built now (IBM’s BlueGene/L and Cray’s Red Storm) will be
able to sustain between 4-10 TFLOPS of performance, allowing one to run 10km
global atmospheric simulations at a rate of 22–50 simulated days per day. This estab-
lishes a performance level for atmospheric modeling competitive with that obtained
using the specialized vector supercomputer architectures of the Japanese Earth Sim-
ulator. On that machine, the AFES (Atmospheric model for the Earth Simulator)
obtained 27 TFLOPS of performance and an integration rate of 57 simulated days
per day [Shingu(2002)]. AFES uses a global spectral model for its dynamical core,
and thus requires more flops to achieve similar integration rates.

The semi-implicit time-stepping approach is promising, as we have evidence that it
results in faster simulated days per day integration rates, with typical speedups in the
range of 2-3. However, in practice we see a failure to converge approximately 4% of
the time, therefore this approach remains experimental, and the subject of continued
research.

The parallel performance of the spectral element method allowed us to conduct a
mesh convergence study using a polar vortex model problem. This problem is the
focus of much recent research. It has a complex unstable evolution dominated by
strong potential-vorticity gradients. Only at high resolution (36km and 200 vertical
levels) does evidence for mesh convergence of large scale features start to become
apparent.

We have also presented a promising new set of cubature points on the triangle which
can be used both for interpolation and integration. The fact that the interpolation
and integration are co-located means that the points yield a diagonal mass matrix
(DMM). We presented implementation strategies of this DMM triangular spectral
element (TSE) method for elliptic and hyperbolic equations on planar and spherical
surfaces. We compared the cubature points to the usual strategy of employing one
set of points for interpolation (Fekete) and another set for integration (Gauss) which
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we call Fekete-Gauss TSE; this method, however, does not yield a diagonal mass
matrix. The cubature points compared quite favorably with the Fekete-Gauss points
especially for the system of nonlinear hyperbolic equations. In addition, these good
solutions can be obtained quite cheaply with the cubature method because they yield a
diagonal mass matrix which allows for simple and efficient time-integration strategies;
this may now allow the triangular SE method to compete in terms of both accuracy
and efficiency with the quadrilateral SE method while allowing far more flexibility in
the choice of adaptive unstructured grids.
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