

 3

SAND2003-2928
Unlimited Release

Printed October 2003

Developing Close Combat Behaviors
for Simulated Soldiers Using Genetic

Programming Techniques

Mark J. Schaller and Richard J. Pryor
Evolutionary Computing and Agent-Based Modeling

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110

Abstract
Genetic programming is a powerful methodology for automatically producing solutions
to problems in a variety of domains. It has been used successfully to develop behaviors
for RoboCup soccer players and simple combat agents. We will attempt to use genetic
programming to solve a problem in the domain of strategic combat, keeping in mind the
end goal of developing sophisticated behaviors for compound defense and infiltration.
The simplified problem at hand is that of two armed agents in a small room, containing
obstacles, fighting against each other for survival. The base case and three changes are
considered: a memory of positions using stacks, context-dependent genetic programming,
and strongly typed genetic programming. Our work demonstrates slight improvements
from the first two techniques, and no significant improvement from the last.

 4

Table of Contents

Introduction..5
 Simulation Training...5
 Genetic Programming..6
 Program Morphology in Genetic Programming..7
 Genetic Operations...10
The Soldier Problem..11
 The Fitness Function..12
 The Soldier Design..13
 The Soldier GP Function Set...15
Advancements..18
 Developing a Superior Fitness Function..18
 Enhancement of Strategic Functions...19
 Contextual Genetic Programming (CGP) ...22
 Genetic Operations with CGP..23
 Manually Defined Contexts...25
Results..27
Accomplishments and Future Research...29

 5

Developing Close Combat Behaviors
for Simulated Solders Using Genetic

Programming Techniques

Introduction
 Consider that modern combat situations differ significantly from those known and
researched by military strategists from previous generations. Adversaries are more likely
than ever to use sophisticated weapons and communication technologies, and modern
battlefields resemble open fields no longer. To maintain America’s military strength, our
armed forces need to prepare themselves for combat in unique environments that resist
the application of antiquated combat techniques. More than ever before, it is important
for our soldiers to train in a variety of environments against intelligent adversaries who
use a variety of technologies. Simulated combat, where soldiers compete against agents
in virtual or augmented environments, is one available tool for providing that necessary
training.

Simulation Training

 Simulation has many compelling advantages over real-life war gaming. A
training exercise in a simulated environment can be replayed multiple times with little
additional cost. Virtual environments permit training supervisors to review extremely
detailed log files, which could lead to a better understanding of trainees’ errors. Also,
training supervisors can effect major structural changes in combat environments without
concern for the cost of physically reconstructing a training environment, and in much less
time.

 Simulation also entails different costs than traditional wargaming. In addition to
the cost of purchasing and caring for the hardware required for realistic combat
simulations, there would be a high cost in developing and maintaining the software that
creates the simulation. There would also be a significant cost in developing realistic,
intelligent simulated adversaries. Sandia National Laboratories is currently engaged in
research that will help mitigate these costs. One instance is the UMBRA system, which
provides a physical simulation environment that can bring together models that vary
tremendously in their size and complexity. Another research effort, principally directed
by Rich Pryor in organization 9216, Evolutionary Programming and Agent Based
Modeling, seeks to develop a system to automatically produce simulated soldiers with
intelligent combat behavior by using genetic programming and other evolutionary
programming techniques.

 This paper describes the most recent efforts of Rich and myself over the last year.
We set out to build a system that develops sophisticated behaviors for soldier agents

 6

automatically. Because genetic programming has been successfully used in the past to
create intelligent agents in similar domains, such as the RoboCup softbot competition
(Luke, 1998), and has proven successful in previous experiments involving agents that
must prioritize and balance several goals (Pryor, 2002), we decided to use genetic
programming techniques in our system. In this paper, we will document the processes
used to create and refine that system, and our accomplishments; it will also describe the
directions we would like to take the research, and what we believe should be possible for
such a system to do.

Genetic Programming
 Genetic programming is a maturing methodology that has attracted the interest of
hundreds of researchers in artificial intelligence and evolutionary algorithms. Well-
developed descriptions of genetic programming can be found in previous papers in this
sequence (see Pryor, 1998 and 2002), or in any of several books. The seminal work in
genetic programming, Genetic Programming: On the Programming of Computers by
Means of Natural Selection, was written by John Koza, the methodology’s inventor, and
is extremely accessible and informative. We will include only the briefest of summaries
here, in order to provide a reference against which the reader may compare the changes
we made.

 A program that employs genetic programming repeatedly creates collections,
called populations, of programs. These populations will hold anywhere between a few
dozen to hundreds of thousands of individual programs. Each time a genetic program (or
GP) creates a population, it replaces its previous population. Each iteration of this
process is called a generation. With the exception of the programs in the GP’s first
population, which are randomly generated, all the programs in a population are
constructed out of fragments of programs from the previous population, in a way that is
similar to how the genetic material from a generation of a biological species is generally
recycled from the genetic material of its preceding generation. This analogy is the root of
the convention that computer scientists use when they refer to genetic programming and
similar methodologies as evolutionary, or genetic, algorithms. (There is some delicacy in
these naming conventions, for while some may refer to genetic programming as an
instance of a genetic algorithm, the phrase “genetic algorithms” refers to an ideologically
similar but distinct methodology.)

 The real world contributes to natural selection by prohibiting individuals in a
species from reproducing and thereby prohibiting their genetic material from contributing
to subsequent generations of the species. Similarly, a genetic program evaluates the
individual programs in its populations and, when constructing a new population, prefers
to use fragments of code from individuals that evaluated well over fragments of code
from individuals that evaluated poorly. As long as an individual program’s performance
in these evaluations is based on its code, this process will lead to the proliferation of well-
evaluating programs in the GP’s population.

 The evaluation function applied to the programs reflects some problem the user
would like to see solved. For instance, if the user would like to evolve a program to

 7

control a UAV, and direct it to survey an area, the evaluation function—more commonly
called the fitness (i. e., survival of the fittest) function—might simulate the flight of a
UAV over some landscape, and return the amount of ground it surveyed. (It should also
return whether the UAV crashed.) Populations from later generations are likely to contain
programs that instruct a UAV to cover a lot of ground, and not crash.

The primary philosophy behind genetic programming should now be clear,
although several details have been glossed over so far, such as how individuals in a
population can represent programs, and how those programs are executed. After all, a
human programmer writes code in a programming language like C++, but it is quite
unlikely that a program formed by gluing together fragments of C++ programs—even
quite capable programs—will even compile, let alone perform the tasks of the previous
programs, let alone perform those tasks in a better way! The standard solution to this
problem, faced by many evolutionary programming methodologies, has been to encode
programs in structures that are amenable to fragmentation and reconstruction. The
structure used by genetic programming is the tree.

Program Morphology in Genetic Programming

 In genetic programming, each individual is a tree (in the data structure sense), and
each node in a tree is a function. These individuals may be called programs (because
they are sometimes executed), individuals (because they are generally found in a
population), trees (because they are structurally represented as trees), and when the
desired programs are used to control agents, they may also be called behaviors. The
nodes that make up trees may also be called atoms or functions, and a particular node’s
children are either called its children, its parameters, or sometimes its branches.

Every GP has a way of parsing, or interpreting, the trees used by its individuals.
A GP needs to know what kind of atoms will be used inside its trees, and how to translate
those atoms into behavior relevant to the problem the GP has been designed to solve.
The set of all available functions used to build programs can be thought of as a kind of
genetic alphabet. The programmer of a GP decides which functions go into that alphabet.
It is hopefully evident that the choice of functions used to create programs in this manner
is an extremely important decision to make while designing a genetic program. Different
problems will almost certainly require different function sets. Also, the set of functions
chosen by a GP programmer to solve a problem is seldom obvious or unique. Ideally, a
great deal of knowledge, experience, and intuition goes into choosing a particular
function set.

The number of ways a GP could parse its trees is nearly as numerous as the

number of problems one could use a GP to solve. Here, I will not attempt to list all the
different ways, but I will describe two problems and the ways a GP may parse its trees in
order to solve them, in the hope that the descriptions will explain the variety of
approaches genetic programming makes possible, and elucidate the claims already made
about how a GP works.

 8

Example One: Best-fit Functions

Imagine that you have a collection of x-y data points, but you don’t know what
function was used to create them. There are many techniques you could use to find the
function, and genetic programming is one. To apply genetic programming, first decide
what the role of the individual is: in this case, each individual shall represent a function f
that takes a single input, x, and outputs a value, f(x). Then, decide what the fitness
function should be: in this case, for each individual f, it shall be the sum, for each data
point (x,y), over the difference between the data point’s y value and the corresponding
value f(x). Finally, determine the GP’s function set: in this case, one possible function
set consists of the functions +, -, *, /, ^, each of which has two children, the functions
sqrt(), abs(), sin(), each of which has one child, and the “function” x, and a variety of
constant values between -1.0 and 1.0, none of which have any children.

In this way, each individual represents an arithmetic function on x. The way the

GP parses an individual’s tree is simple: the output of the program is the value returned
by the node at the root of the tree, and each function’s parameters are provided by the
values returned by its subtrees. In this case, it may seem unreasonable to call each
individual a program, because their operations are so clear and more commonly thought
of as mathematical, but certainly they are programs—programs that take a single floating
point input and produce a single floating-point output.

A GP defined as above would produce population after population of candidate

functions, and there would be a tendency for later populations to contain individuals
whose functions fit the data points better and better. If it is possible for a function to be
constructed out of the mathematical operations described above to match exactly all of
the data points, then it is also possible for this GP to find an exact solution to the
problem. However, it might be the case that there exists a mathematical function that
matches exactly the data points, but which is also impossible to construct using the
operations included in the function set. In such a case, the GP would produce better and
better approximations of the solution, but it would never “solve” the problem—get a
perfect answer. In order to solve the problem, it would be necessary to change the
function set.

In a case such as this, if we have access to the mathematical function that

produced the data points, it would be clear how to change the function set. However, in
more complex problems, when we cannot be certain whether a perfect solution can be
reached using a particular function set, the job of changing the function set is much
harder, and the reasons why should be clear. In fact, this is an important consideration
that I will return to later in this paper, as it bears on the problem we have sought to solve.

Example Two: Agents in a Simple Task Environment

Let me provide another example of how a GP might operate. Consider the
problem of developing behaviors for an agent in a simulated 2-d environment in which
there are randomly deposited resources. Suppose that the goal of the agent is to pick up,
move, and drop resources, so that after a certain amount of time, the environment has a

 9

concentrated pile of resources instead of having them scattered around. This is a
complex problem with an unobvious solution, but the rules are simple, and the
capabilities of the agent are limited, and so it lends itself well to genetic programming.
Let each individual be a program that directs the behavior of the agent, and let the fitness
function be a measure of the concentration of the environment’s resources after letting
the agent act within the environment for a limited time, directed by the program of the
individual being tested.

How should the function set for this problem be constructed? Well, the agent must

be able to sense its environment, and act in it. Its functions should allow environmental
analysis, and action. Some descriptions of sensory functions that we would expect to find
in a GP used to solve this problem are:

• How many resources are right in front of me?
• How many resources am I carrying now?

Some action functions we’d expect to also find are:

• Drop all my resources.
• Pick up all the resources here.
• Move forward.
• Turn 90 degrees to the left.

In order to construct behaviors for an agent out of these functions, we would need
to adapt all of these qualities so that they could be combined in a tree format. Another
important factor to consider is that in standard genetic programming, one restriction on
the function set is that every function must return the same data type. This is because the
operations used by a genetic program to manipulate program trees do so without
considering the functions they are moving. We’ll describe those operations shortly, but
first we need to describe how the resource-gathering problem can be expressed in the
language of GP. This is especially important because our soldier problem is similar.

Here is one way of making accessible the functionality we need. Every function

shall return to its parent a floating point value, so that the sensory functions mentioned
above return reasonable values. By default, whenever an action function is evaluated, it
shall return 0. 0, but also immediately do its action as a side effect if possible. In
addition, we shall add a function, “If GT” that takes four subtrees as input, and evaluates
and returns the value from its third subtree if the value of its first subtree is greater than
the value from its second subtree, and evaluates and returns the value from its fourth
subtree otherwise. This function allows behaviors to take actions based on conditions.
Also, we could add addition, subtraction, multiplication, MAX(..), and MIN(..) functions
that take multiple inputs and provide the appropriate output, and a collection of functions
that return useful constant values (perhaps between 0 and 100, say, or something on the
scale of the concentration of resources in the environment).

 10

This is a very different example than the data point matching example, but
fundamentally we’re still using the same tools: a fitness function to evaluate the
performance of programs, programs that are represented as trees, and nodes that
correspond to functions that are appropriate within the problem domain. The GP operates
similarly in both cases, using the same operations to build individuals out of other
individuals, and evolve effective answers.

Genetic Operations

 Genetic programs perform three operations to create new programs out of old
programs. They are reproduction, mutation, and crossover, and operate on a single
program (in the cases of reproduction and mutation) or on a pair of programs (in the case
of crossover). Reproduction copies a program in whole from one population to the next.
Mutation copies a program into the next population, but it also selects a subtree in that
program, deletes it, and constructs a new, randomly configured, subtree in its place.
Crossover selects a subtree in each program and exchanges them, putting the newly
formed pair of programs into the next population. These operations preserve and
reconfigure genetic material from one generation into the next.

 It is important to consider the strategy of selecting which programs get operated
upon. Genetic programming works by selecting better—often called fitter, in
acknowledgement to the fitness function—programs more often than worse, or less fit,
programs. An example of such a selection strategy is called tournament selection. When
a genetic program that employs tournament selection intends to choose a program to
perform reproduction, mutation, or crossover on, it considers two programs chosen at
random from its population, and chooses the fitter program. This strategy makes
selection biased towards fitter programs, which is desirable. Other selection strategies
might sort all the programs in a population by fitness, and then use that ordering as the
basis for preferred selection of fitter programs—for instance, by selecting from the top
20% of programs, 80% of the time. There are a variety of selection functions, but they all
bias program selection towards fitter programs.

 It should be clear by now that there are many ways to configure the methodology
of genetic programming to a particular problem, and many choices that must be made
when designing a genetic program. All these decisions are important, and can change the
efficiency of a genetic program when applied to a specific problem. Unfortunately, there
is no “best” configuration for genetic programming—one implementation may perform
well on problem A and poorly on problem B, and another may do the opposite. In order
to choose an implementation wisely, a genetic program’s designer should take into
consideration his or her specific problem definition.

 11

The Soldier Problem

 Our goal is to develop behaviors appropriate for simulated soldiers in a combat
environment. An image of the simulated environment follows:

Figure 1. An Image of the Simulated Close Combat Environment

The room is a discrete, square grid, twenty units on a side, with four outlining and
three interior walls. The walls obstruct the sight of the agents, and also prevent bullets
from passing through them. The top of the room (as portrayed in Figure 1), by
convention, is “north,” and the other directions follow. Two agents play through the
simulation, a “good soldier” and a “bad soldier.” Each soldier occupies one non-wall
grid location and faces one of eight directions. Time is discretized into steps; during a
step, an agent may turn as often as it wishes and may take one action: move (forward, to
either side, or backward) to an adjacent square, shoot, or do nothing. An agent that is
facing a grid corner direction, such as NE, will move “farther” in a single timestep than
an agent facing a direction such as N, but that effect is ignored for the sake of simplicity.

Each agent is equipped with a gun, although the skills involved in aiming it have

been abstracted away. The factors involved in determining whether an agent successfully
shoots its opponent are: how far apart the agents are, whether the shooter has been
injured, whether the target is moving, and, naturally, whether the shooter can see the
opponent. (Agents cannot shoot through walls.)

Agents can see in a 135-degree arc centered in the direction they are facing. An

agent that can see its opponent can also determine the direction its opponent is facing.

 12

An agent cannot hear another agent move; they can, however, hear another agent shoot.
An agent that is shot once is considered injured, and an agent that is shot twice is
considered dead. Mobility is not compromised when an agent is injured, although gun
accuracy is reduced. The test ends when either agent is killed or when 100 timesteps
have elapsed.

When a simulated battle begins, each agent is placed into the room in a random

location, facing a random direction. If the agents are placed into the room so that they
could see each other without moving (that is, if a wall doesn’t separate them), then one of
the agents is relocated. In each timestep, each agent may act, making their decision by
analyzing the sensory information available from the current timestep, as well as any
stored state that the agent might have, by executing their program. Each agent
remembers whether it has seen its opponent, and if so, where the opponent can be found;
also it remembers whether it has successfully injured its opponent, and knows whether it
is injured. Agents also maintain additional memories, as will be described later.

In this simulation, the evolved programs always control the good soldier. A

simple and effective script always controls the bad soldier. The bad soldier does not
move around the playing field; it turns towards any gunshot it hears, and always fires on
the good soldier if the good soldier is visible.

The Fitness Function

The goal of the genetic program is to produce a program that is sophisticated
enough to win more simulated battles than it loses. Therefore, we want to use a fitness
function that returns high values of fitness whenever it is passed a program that wins
more often than it loses, or ties. Throughout the course of our experimentation, we
developed many fitness functions, but they all were of the form:

1. Gather performance statistics from many (between fifty and a thousand)

simulations.
2. Perform a function on those statistics that returns a higher value when desirable

behavior, such as winning more often than losing, occurs more often, and a lower
value when undesirable behavior, such as spinning in circles or getting killed,
occurs more often.

3. Return that value as the program’s fitness.

There are two points that we would like to make clear from what we just
described. First of all, our fitness functions, even the functions that run through a
thousand simulations to evaluate a single program, cannot be perfect measures of a
program’s fitness. Ideally, the fitness function would test every possible initial
condition—and in some problems, that is possible—but in our problem, there are easily
over a hundred thousand (perhaps nearly a million) initial conditions, so we settled for
what we hoped would be a representative sample. Additionally, the simulation relies on
some probabilistic effects, such as gunfire. These effects lead to some imprecision in the
fitness function, but our intent in creating a fitness function was to measure the

 13

approximate ability of each program, and use enough tests to reduce that measurement’s
imprecision while keeping the computational requirements of the evaluation low.

Secondly, because we used population sizes of between 200 and 20000 programs,

and because each program might need to be tested in the simulator fifty times, and
because each test in the simulator required up to one hundred timesteps, and
environmental information needed to be calculated every timestep, we chose to use look-
up tables for most of our environmental calculations. Tests performed during our
research determined that using look-up tables speeded up the genetic program by a factor
of five. Nevertheless, our optimized program is extremely computationally intensive;
assuming that every program execution results in a mere hundred function calls before
deciding on an action (our programs contain between 300 and 2000 functions, or nodes
on the tree), and that tests last on average a mere twenty timesteps, and that only fifty
tests are used to evaluate a program, and that our populations consist of a thousand
programs, a billion function calls will occur every ten generations. (Note that our genetic
programs typically ran for hundreds of generations; pretty soon we’ll be talking about
serious computational requirements!)

In the end, our most powerful genetic program is capable of producing programs

that win the simulator battles between 75% and 79% of the time. Getting to this point
took a great deal of experimentation, and a great deal of learning. To explain what we
learned, we will describe what technologies we began with, and then examine each
change we made and the results of that change.

The Soldier Design

 The project began as the third phase in a multiyear effort to evaluate genetic
programming as a methodology that could be used for developing soldier behaviors. The
first phase investigated the use of genetic programming to produce behaviors for simple
robots. A full account of that research can be found in Pryor, 1998. The second phase
determined that genetic programs were capable of developing agent behaviors that
pursued several goals simultaneously. For more details on that work, involving the
creation of behaviors that control UAVs, see Pryor, 2002. The third phase would lead to
the actual development of soldier behaviors through genetic programming.

 The genetic programming system we began with came from UAV glider research.
It was written in C, used some special memory allocation techniques, and could run on a
multi-processor machine. In order to make the system work on the soldier problem, we
changed its evaluation function so that it would create an instance of the soldier
simulation instead of the glider simulation, and we changed its function set so that
evolved programs could control soldier agents. We also added code that created look-up
tables for the simulation, as well as a mechanism that could read and write the tables to
disk, so that they wouldn’t have to be calculated every time the GP ran.

 One additional feature that we inherited from the UAV code had to do with the
soldier’s data structure. The data structure used by the UAV GP to represent the UAV
included an array of registers that the behaviors could use to store and recall arbitrary

 14

numeric data. We included that functionality in our genetic program, and augmented it
by reserving the first three registers for important data: the position and orientation of the
bad soldier. The simulation initializes those registers to zero at the beginning of each
test. When the good soldier finds the bad soldier, the latter’s positional information is
stored in those registers. In other respects, those registers are treated as read-only.

The agent structure we began with looked like this:

struct Soldier {
long SoldierID;
long SoldierXPOS;
long SoldierYPOS;
long SoldierDIR;
long SoldierSTAT;
long SoldierACTION;

 long SoldierSEENENEMY;
 long SoldierSHOTENEMY;
 long SoldierLASTMOVE;
 double Register[NUMOFREG];
}

Although the memory concepts of “have I seen my enemy” are clearly boolean in

nature, the variables SoldierSEENENEMY and the other boolean-like variables are declared
as longs, and the function implementations query their state using statements such as

if (SoldierSEENENEMY == 1)
...

in order to provide for possible extensions of functionality. The variable SoldierSTAT
described the health of the soldier agent, which could be: healthy, injured, or killed. The
variable SoldierACTION was used by the behaviors as output; it encoded the chosen
action, which could be: do nothing, shoot, move forward, move backward, move left,
move right, or undo the last movement.

We also directly used the node structure from the UAV genetic program, and
reused the node’s data member regIndex in function 14, DISTANCE IN DIRECTION. The
node structure we began with looked like this:

struct Atom {
 long atomKind;
 double atomValue;
 long regIndex;
 long atomHitCount;
 struct Atom *ptr1;
 struct Atom *ptr2;
 struct Atom *ptr3;
 struct Atom *ptr4;
 struct Atom *ptr5;
 struct Atom *nextFree;
};

 15

The atomKind member described the type of function the node represented, the
atomValue member held whatever internal floating-point parameter was required by the
function, if any (the constant value in the case of function 25, for instance), and the Atom
pointers led to the node’s children, or were NULL. The atomHitCount member kept
track of how frequently the node was evaluated in the tree, for debugging and statistical
purposes.

The Soldier GP Function Set

Our initial function set included 29 functions, although some functions performed
multiple tasks. 19 of those 29 functions take no parameters. A table describing all 29
functions follows.

Table 1. List of Functions Originally in the Soldier GP

Index

Name

Description

Number of
Children

1 RETURN Root node. This node is always and only
found at the root of program trees. Executes
and returns the value from its first child.
The first child leads to the primary tree.
Children 2 through 5 lead to the ADF
subtrees.

5

2 ADD Returns the sum of its two children. 2
3 SUBTRACT Returns the difference of its two children. 2
4 IFGTZ Child 1 is evaluated, and if greater than zero,

this node evaluates and returns the results of
child 2; otherwise, it evaluates and returns
the result of child 3.

3

5 IF I AM
HURT

If the soldier is injured, this node evaluates
and returns child 1; otherwise, child 2.

2

6 IF I CAN SEE
IT

If the soldier can see its opponent, this node
evaluates and returns child 1; otherwise,
child 2.

2

7 IF I HAVE
SEEN IT

If the soldier has seen its opponent, this
node evaluates and returns child 1;
otherwise, child 2.

2

8 IF I HAVE
HURT IT

If the soldier has injured its opponent, this
node evaluates and returns child 1;
otherwise, child 2.

2

9 IF WE SEE
EACH
OTHER

If the soldier can see its opponent, and its
opponent can see it, this node evaluates and
returns child 1; otherwise, child 2.

2

10 STORE IN
REGISTER

Returns the value of its single child but also
stores this value in the register specified in

1

 16

Index

Name

Description

Number of
Children

the node header, in regIndex.
11 MY X POS Returns the soldier’s X position. (1-19) 0
12 MY Y POS Returns the soldier’s Y position. (1-19) 0
13 MY

DIRECTION
Returns the soldier’s direction. (1-8) 0

14 DISTANCE
IN
DIRECTION

Returns the distance between the soldier and
the closest wall in the direction specified in
the node header, in regIndex; this specified
direction is relative to the soldier’s direction.

0

15 TURN LEFT Turns the soldier 45 degrees CCW. After
turning, if the soldier can see its opponent,
then this function returns a value of 1. Else,
0.

0

16 TURN RIGHT Turns the soldier 45 degrees CW. After
turning, if the soldier can see its opponent,
then this function returns a value of 1. Else,
0.

0

17 TURN
AROUND

Turns the soldier 180 degrees. After
turning, if the soldier can see its opponent,
then this function returns a value of 1. Else,
0.

0

18 MOVE
FORWARD

Moves the soldier forward one grid space.
This function also terminates the behavior
tree execution.

0

19 MOVE
BACKWARD

Moves the soldier backward one grid space.
This function also terminates the behavior
tree execution.

0

20 MOVE LEFT Moves the soldier left one grid space. This
function also terminates the behavior tree
execution.

0

21 MOVE
RIGHT

Moves the soldier right one grid space. This
function also terminates the behavior tree
execution.

0

22 UNDO MOVE Moves the soldier to the previously vacated
grid space. This function also terminates the
behavior tree execution.

0

23 SHOOT Shoots at the opponent, if visible. If the
opponent isn’t visible, the soldier shoots
anyway, but this only has the effect of
producing sound. This function terminates
the behavior tree execution.

0

24 RECALL
REGISTER

Returns the value of the register specified in
the node header.

0

 17

Index

Name

Description

Number of
Children

25 VALUE Returns the value stored in the node’s
atomValue.

0

26 ADF1 Calls ADF1 and returns its value. 0
27 ADF2 Calls ADF2 and returns its value. 0
28 ADF3 Calls ADF3 and returns its value. 0
29 ADF4 Calls ADF4 and returns its value. 0

 To clarify: functions that end program execution do so after effecting the
appropriate side effect. Also, ADFs are important constructions that can be used by
genetic programs to provide some of the advantages of code reusability. When a
program is executed, execution is passed to the root node, which is always the RETURN
function. It has five children, and as described above, its first child is always evaluated.
However, whenever an ADF terminal function is executed, control goes to a child of the
RETURN node—so that when ADF1 is executed, RETURN’s second child is executed,
and ADF1 returns the value returned by RETURN’s second child. This has the effect of
allowing the genetic program to store code for repeated use, since any ADF terminal
function may be used several times in the primary subtree.

 There is some finesse required to use ADFs in genetic programming. Imagine
what would happen if one of the ADF subtrees included a call to another ADF subtree,
which included a call to the first ADF subtree! The genetic program has to be careful to
prevent recursive ADF calls from happening, or else a program’s execution might never
terminate. Our genetic program manages that responsibility by checking each newly
constructed program for ADF calls in ADF subtrees, and replacing any that it finds with
other, harmless, terminals. However, our genetic program does not distinguish between
ADF subtrees and any other subtree while performing its genetic operations, so code
from ADFs and primary subtrees can mix.

 The last major component of the UAV GP that we changed was its fitness
function. We wrote a new fitness function that rewarded individuals for doing everything
that we considered valuable, and punished behaviors for doing things that we considered
disadvantageous. The list of good things included: moving around the room, seeing the
opponent, shooting the opponent, killing the opponent, winning the combat without being
injured, and winning the combat sooner rather than later. The list of bad things included:
being shot, and being killed. At first, we used a point system that rewarded each of these
behaviors with different numbers of points. These numbers were:

1/20 pt for having moved around the room
10 pts for having seen the opponent
50 pts for having shot the opponent
50 pts for having killed the opponent
50 pts for having killed the opponent without being shot by it
1/2 pt for each extra moment of time at a won simulation’s end
-15 pts for being shot by the opponent
-80 pts for being killed by the opponent

 18

To find the fitness of a program, the GP would run through 120 simulations,

scoring each one using the formula above, and giving the individual its average score as
its fitness. When selecting programs for genetic operations, the genetic program
employed tournament selection: considering two programs, chosen at random from the
population, and choosing the one with higher fitness.

 We ran the genetic program on two systems: a dual processor PC with a gigabyte
of memory, and a CPlant cluster, where we used between four and sixteen processors.
On the PC, our populations held 2000 individuals, and on the cluster, the GP evolved up
to 32,000 individuals simultaneously. We discovered the best behavior on the cluster,
which won its battles about 60% of the time, and won battles without being injured about
30% of the time. We did not feel that this was a success—we believed that at least a 90%
success rate was possible—and so we began to consider what was limiting behavior
development, and how to address those limitations.

Advancements

Developing a Superior Fitness Function

 An immediate concern of ours was the fitness function we employed to score
individuals. By experimenting with its formula, we eventually discovered a function that
encouraged the GP to evolve better behaviors. Again, the GP ran a large number of
simulations, and counted the number of times the soldier was able to find the enemy, kill
the enemy, and kill the enemy perfectly. It also counted the number of times it failed to
kill the enemy, and how often it died in combat.

 The behavior was then assigned a fitness based on one of three formulas, designed
to encourage the development of desirable behaviors in a forgiving way. In the
beginning, it was most important for behaviors to move around the environment and find
the enemy soldier, so if the soldier wasn’t able to find its enemy more than 50% of the
time, its fitness would be exactly the probability (between 0.0 and 0.5) of it locating its
enemy. If the soldier was able to find its enemy more than half of the time, then its
fitness also began to depend slightly on its combat ability, but still mostly on its ability to
find the enemy. The formula we used for this was:

fitness2 = 5 * (F1 - F2) + S1 + 2 * P1 + fitness1
where
 F1 = # of times the soldier finds the enemy soldier
 F2 = # of times the soldier fails to find the enemy soldier
 S1 = # of times the soldier kills the enemy soldier
 P1 = # of times the soldier kills the enemy soldier without being hurt itself
 fitness1 = the probability (between 0.0 and 1.0) of the soldier locating the enemy

 19

 Finally, once a behavior could find the enemy soldier more than 90% of the time,
the focus shifted to evolving strong combat ability. The final formula used in this case is:

fitness3 = [300 * (P1 – (D1 + S2))] + [100 * (S1 – (D1 + S2))] +
[10 * P1] – [10 * F2] + fitness2

where
 D1 = # of times the soldier is killed by the enemy soldier
 S2 = # of times the soldier fails to kill the enemy soldier

This fitness function effectively guided behaviors, and we witnessed an
improvement to a 65% success rate. We had hoped for much more, but began to believe
that the solution that would take us to 90% had to involve a more fundamental change.

Enhancement of Strategic Functions

 One of the fundamental limitations we first sought to remove was the limited
long-distance planning mechanisms available to the evolved soldier behaviors. In each
time step, behaviors could decide only to move one unit distance in any direction. They
were, of course, capable of moving long distances, but not as the result of a single
decision—a long distance movement could be built only out of a sequence of decisions to
move short distances. We believed that the ability to decide, in a single calculation, to
move a long distance should be available to the behaviors, and implemented a memory
module, similar to the registers, that stored grid locations. It held two stacks of positions,
and each could be accessed and modified through the execution of new functions that we
added to the function set. The two stacks were named IHaveBeen and IWannaGo, loosely
after their predicted use. The ability to store and retrieve arbitrary positions was
immediately useful in the sense that we were also able to develop a powerful function
that calculated the nearest position, safe from the enemy soldier, as long as the good
soldier had previously seen its opponent.

We also believed that easier access to the soldier’s own position would be useful,
to facilitate the development of behaviors that were specific to regions of the room. That
concern was addressed with the introduction of two new functions, each of which
controlled tree execution based directly on the soldier’s position. Finally, because of the
large number of newly introduced functions that had important side effects, we
introduced two functions that simply passed control to either all their children, or one of
their children, chosen randomly during execution. All these new functions are included
in a table, here.

Table 2. List of Functions Added to the Soldier GP during Strategic
Enhancement

Index

Name

Description

Number of
Children

30 DO TWO 33% of these functions (chosen at creation, 2

 20

Index

Name

Description

Number of
Children

not during execution) will pass execution to
one of its children, and return its output.
The rest will execute child 1, then execute
child 2, and return the maximum of their
outputs.

31 DO THREE 33% of these functions (chosen at creation,
not during execution) will pass execution to
one of its children, and return its output.
The rest will execute child 1, then child 2,
and then child 3, and return the maximum of
their outputs.

3

32 IFXGT If the soldier’s X coordinate is greater than
this node’s regIndex (chosen at creation
randomly between 1 and 20), execute and
return the output from child 1. Otherwise,
child 2.

2

33 IFYGT If the soldier’s Y coordinate is greater than
this node’s regIndex (chosen at creation
randomly between 1 and 20), execute and
return the output from child 1. Otherwise,
child 2.

2

34 IF IWG
CLOSE

If the top position on the IWannaGo stack is
less than 2 grid spaces away, execute and
return the output from child 1. Otherwise,
and if the stack is empty, child 2.

2

35 IF IHB
CLOSE

If the top position on the IHaveBeen stack is
less than 2 grid spaces away, execute and
return the output from child 1. Otherwise,
and if the stack is empty, child 2.

2

36 PUSH MY
POSITION

Pushes the soldier’s current position to the
top of the IHaveBeen stack.

0

37 PUSH
TARGET
POSITION

Pushes a grid space onto the IWannaGo
stack. This space is calculated using this
node’s regIndex variable as a direction, and
its atomValue variable as a distance, and
making them relative to the soldier’s
position and orientation.

0

38 DISTANCE
TO IHB

Returns the distance between the soldier’s
current position and the top IHaveBeen
position. Returns 0.0 if that stack is empty.

0

39 DISTANCE
TO IWG

Returns the distance between the soldier’s
current position and the top IWannaGo
position. Returns 0.0 if that stack is empty.

0

 21

Index

Name

Description

Number of
Children

40 PUSH SAFE
POSITION

If the soldier has seen its opponent, this
pushes onto the IWannaGo stack the closest
position that is visible to the soldier, and that
its opponent cannot see.

0

41 TURN TO
IHB

If the IHaveBeen stack is not empty, this
causes the soldier to turn towards its top
position. After turning, if the soldier can see
its opponent, then this function returns a
value of 1.

0

42 TURN TO
IWG

If the IWannaGo stack is not empty, this
causes the soldier to turn towards its top
position. After turning, if the soldier can see
its opponent, then this function returns a
value of 1.

0

43 MOVE TO
IHB

If the IHaveBeen stack is not empty, this
causes the soldier to move towards its top
position. This function also terminates the
behavior tree execution.

0

44 MOVE TO
IWG

If the IWannaGo stack is not empty, this
causes the soldier to move towards its top
position. This function also terminates the
behavior tree execution.

0

45 POP IHB If the IHaveBeen stack is not empty, this
pops the top position off the stack.

0

46 POP IWG If the IWannaGo stack is not empty, this pops
the top position off the stack.

0

 Although making these changes fundamentally changed the operation of the
soldier behaviors, we did not see much improvement in the fitness, or level of
sophistication, of the behaviors. We witnessed a slight improvement in the success rate,
from 65% without stacks to 72% to 74% with them, but the results were not as dramatic
as we would have liked. In part this was probably due to the broadening of the search
space of programs that the GP has to navigate, because with more functions, and more
node types, there are more possible trees. However, we noticed no pronounced
slowdown in program evolution, so those effects were most likely not the sole cause for
the mediocre gains.

We believed our problem was that we had not yet confronted the core problem
preventing our GP from finding good solutions. While the older UAV GP was successful
at developing behaviors that optimized towards several goals simultaneously, the soldier
problem had more complicated and interrelated goals that required a variety of behaviors,
and when we reflected on this fact, we thought that the GP design that solved the UAV
problem might not be able to solve the soldier problem at all. We began to believe that

 22

evolving a single program that provided effective behavior for each subtask was too
difficult, but that a collection of programs, each specialized for a particular task, could,
when taken together, provide the necessary amount of sophistication to make behaviors
that succeeded at the soldier problem 90% of the time.

 But how could a new GP, a contextual GP, work with contexts? We considered
two options: describe the different contexts by hand, or let the definitions of the contexts
evolve themselves. A contextual GP, trying to evolve contexts automatically, and then
evolve specialized behaviors for each context, could be even more computationally
expensive than a traditional GP. On the other hand, if we provide the GP with contexts
designed by humans, we could decrease the computational requirements of evolving
complex behaviors, but also sacrifice the useful qualities that depend on the GP
discovering solutions automatically. In the end, we tried both approaches.

Contextual Genetic Programming (CGP)

 We had to develop a new framework for doing genetic programming that worked
with contextually specific behaviors. We introduced several new classes of objects into
the GP ecosystem: genes, each of which was defined as a context and a behavior paired
together, and individuals, which were collections of genes. In some tests, the number of
genes per individual differed amongst individuals in a population, and in others, the
number of genes per individual was fixed. In any case, we needed to develop new
implementations for the familiar tasks of selection, mutation and crossover that respected
genes and the contexts and behaviors that they consist of, as well as a new operation.

 First, it is necessary to describe how contexts are implemented. Again, with this
task, we had to experiment to find an appropriate method of implementation. We settled
on a method that defined contexts using points in a high dimensional space, in which
each dimension corresponded to a particular environmental or internal measurement. A
context was assigned a single point in that space; at each time step, the soldier agent
would decide which context it was in by calculating the distance from its state,
environmental and internal, to every one of its contexts’ points, and the context
associated with the closest point won out. Naturally, we had to be careful in how we
defined the distance metric for this space—some environmental measurements, such as
coordinate position, had values that could vary between 1 and 20, and others, such as
“have I been injured” and “can I see the enemy soldier”, had Boolean values that could
only take on one of two distinct values. To calculate the distance between points in this
space, we used a metric that consisted of a sum of scaled differences, and we
compensated for the varying ranges by applying scalar factors to each dimension that
weighted each one roughly the same.

 Behaviors did not have to change at all—the tree structure used in our previous
genetic program was appropriate.

 23

Genetic Operations with CGP

 We had to change the way genetic operations affected the more structurally
complex individuals in keeping with the reasons we developed our contextual approach.

Selection
 The operation of selection, on the level of individuals, did not have to change.
Since individuals still had their own fitness values, in order to select one individual, two
individuals were pulled out of the population, and whichever one had a higher fitness
rating was selected.

Crossover
 Crossover, typically considered the most important tool in genetic programming,
had to change to work with genes and contexts. Its early stage remained the same—first,
using the selection operator, select two parent individuals. The rest, however, is
different. The next task is to randomly choose one individual to be the recipient of the
others genetic material. Then, within the chosen individual, choose a gene at random to
be the recipient in the crossover. At this point, one gene in one individual has been
chosen, so one context and its behavior tree have been identified. Next, we choose one of
the genes in the other individual to be the donating participant in the crossover, but this
decision can be made in one of two ways: the donor gene may be randomly chosen,
independent of the first chosen gene, or alternatively, the selection of the donor gene may
be influenced by the particular recipient gene. In our contextual GP, both methods are
utilized, with the program randomly determining one or the other as the operation is
executed.

The particular method of influence exerted by the first gene upon the second is as
follows: the chosen donor gene is the one whose context’s point is the closest to the point
of the first gene’s context. We designed this based on our (hopefully reasonable)
assumption that it would be more useful to exchange code between behaviors that are
trying to solve similar problems than it would be to exchange code between behaviors
that may be specializing towards different tasks. The fact that two contexts have points
that are close together implies that the behaviors paired with each context are trying to
solve similar problems. Naturally, it is also conceivable that behaviors optimized
towards different tasks could still benefit from sharing code, so both types of decisions
are used, although the first occurs more often (60%).

 The procedure for exchanging code between behaviors is the same as in classical
genetic programming, but when we allowed the GP to evolve its contexts automatically,
we also implemented a procedure to “crossover” contexts. The procedure described
above is used, and in addition to receiving genetic material from the donor gene, the
recipient gene’s context is also changed by moving its point to the midpoint between its
old position and the position of the donor gene’s point. For non-continuous dimensions,
the midpoint is rounded to the nearest valid value. (For Boolean dimensions, this is
rather boring; if the two points involved differ for a particular Boolean value, then the
final value is randomly true or false.)

 24

Mutation
 We changed mutation predictably, while taking into consideration one important
factor. Mutation proceeds as follows: the selection operation is performed to choose one
individual with good fitness. After that, one of two procedures take place—either a
single gene is randomly chosen for mutation, or a collection of genes is chosen. The
rationale for this is that smaller changes, such as those limited to a single gene, are less
likely to be destructive to an individual, and more likely to realize incremental gains.
However, without the ability to make several changes to several genes simultaneously,
some high fitness regions of the answer space may be inaccessible to the genetic search.
This phenomenon is easily illustrated by a simple example. Consider an individual with
two genes, each of which can have one of two behaviors.

(State of the individual: fitness of
the state)

Context X with
Behavior 1

Context X with
Behavior 2

Context Y with Behavior a State 1a: Fitness 10.0 State 2a: Fitness 5.0
Context Y with Behavior b State 1b: Fitness 5.0 State 2b: Fitness 30.0

In the table above, if we restrict the mutation so that is modifies only one gene at
a time, an individual in state 1a will almost certainly never reach state 2b, although 2b is
a more fit state (The indeterminacy of the selection operation could permit an individual
in states 2a or 1b to survive and mutate, but this is unlikely). Therefore, it is important to
permit both single-gene and multiple-gene mutation.

Regardless, when a gene is chosen for mutation, its behavior tree is always

mutated, and when the GP is allowed to automatically evolve contexts, there is a small
chance that the gene’s context is also mutated, by moving its point a small distance in a
random direction.

Specialization

Although the genetic processes described so far encompass the functionality
necessary to improve extant genes, they do not permit an individual to further specialize
itself and create new genes. We also developed a procedure for an individual to add a
gene to its collection and refine its specialization, when we want the GP to specialize
itself automatically. This process is weighed down by a number of complications, but we
developed solutions that mitigate those problems.

One of the challenges in creating a new gene for an individual is that the new

gene will necessarily take precedence over the extant genes within some region in
measurement space, and it will almost certainly have a negative influence on the fitness
of the individual, since the new behavior tree will be random and, probably,
inappropriate. In order to confront this problem, we would like to use some kind of
evolutionary competition to evolve a new, useful gene for an individual. One can
imagine how such a competition could be held: a population of genes could be

 25

constructed, then, the fitness of each gene could be calculated by measuring how well (or
how poorly) it assists the individual in its task.

This would make sure that the newly introduced gene doesn’t badly harm the

specializing individual, but there’s another problem: if the candidate genes permitted
their contexts to evolve with their behaviors, one way of optimizing the fitness of the new
gene could be to evolve its context to represent as small a volume in measurement space
as possible, by mutating its context’s point into a corner, or underneath an extant
context’s point, and thereby minimize its use in the individual! This wouldn’t serve the
purpose of refining the specialization of the individual, since behaviors that occur
infrequently wouldn’t be subject to much, if any, evolutionary pressure, and wouldn’t
improve over time.

We managed to use a procedure similar to the one just described, but to confront

the problem of contexts drifting towards minimal use, we fixed the position of the genes’
contexts in the beginning of the evolutionary competition. That is, when we generated
the initial population of genes, we created a number of sub-populations of genes, each of
which shared a common context. Then, in the first (approximately) hundred generations,
we held the shared contexts constant, and permitted behaviors to only swap genetic
material with others within their sub-population. By the end of this first stage of
evolution, we had a collection of behaviors that were fit within the context they were
given, and thus could withstand the genetic force that would otherwise cause them to drift
into obscure regions of measurement space.

During this process, it was possible for the GP to discover that no new gene

augmented the fitness of the specializing individual. This was rare early on, but as
individuals became more and more specialized, it would happen more often. In such a
case, the GP gave up searching after detecting that no progress was being made after a
certain number of generations of trying (for example, we used a threshold of 200
generations). The specialization procedure would quit, and the original individual would
survive, unchanged.

Manually Defined Contexts

 When we provided contexts for the GP manually, we were able to make more
human-understandable separations between contexts than when contexts evolved
automatically. This kind of change to the GP is a double edged sword, in that we may be
able to effect some positive refinements that are rooted in our intuitive understanding of
the problem, but in doing so we might overlook factors that could be discovered by the
GP on its own, and therefore hinder the development of solutions that lie outside of our
intuitive understanding of the problem. Nevertheless, we felt it would be productive to
experiment and see whether defining contexts manually could contribute to the GP. We
tried two approaches: setting up a collection of contexts that could have been evolved
using the automatic procedure described above, but that would make sense intuitively to a
person trying to decompose the soldier problem, and setting up contexts in a way
inaccessible to those mechanisms, but still in a human-understandable way, which was to
assign a context to each room in the simulated area, as illustrated below.

 26

Figure 2: An image of the simulated environment, with room contexts highlighted

 Figure 2 shows how we decomposed the soldier problem into the problem of
finding behavior appropriate for “rooms” in the environment. This sort of decomposition
would be difficult to obtain with the automated context evolution described above. In the
other method, we separated the task into five stages and evolved a behavior for each
stage. The stages we identified were:

• Search, when the enemy hasn’t yet been found,
• Panic, when the enemy has shot at the soldier but the soldier doesn’t know where

the enemy is,
• Favorable combat, when the soldier can see the enemy but the enemy doesn’t see

the soldier,
• Normal combat, when the soldier and its enemy are face to face, and
• Retreated, when the soldier has seen the enemy, doesn’t see it now, and the

enemy isn’t shooting at the soldier.

 In these cases, when the number and shape of contexts are held constant,
evolution can proceed in two ways. First, a population of individuals can evolve and
compete with each other, and mutation and crossover can operate on a number of genes
simultaneously. Alternatively, a single individual can be chosen, and all of its genes but
one held constant, and a population of behaviors can evolve to replace the behavior in the
single gene. This can be repeated for each of the genes belonging to an individual. In
any case, the GP lets the behaviors change, but contexts stay the same from generation to
generation. We employed both of these techniques—using the first to generate a few

 27

high quality individuals, and then the second on each of those individuals to refine the
behaviors—and then back to the first, placing all the refined high quality individuals in a
large population and evolving them all together again. And so on.

Results
 One of the challenges we faced while developing this portfolio of technologies
was how we could compare the behaviors generated by different approaches. Some of
the approaches used fitness functions that were incompatible with others, so it made little
sense to compare calculated fitness directly. Instead, we experimented with fitness
functions and found the ones that produced the best individuals, which we then evaluated
in a separate program that thoroughly tested every individual in the same way.

 The test program tested each behavior a large number of times—generally around
400,000 tests were performed for each behavior. It could evaluate a single behavior in
less than five minutes. For each behavior, the test program would report a number of
percentages: the probability of the soldier winning a combat without being shot at all, the
probability of the soldier merely winning the combat, the probability of the soldier
finding its enemy, and the probability of the soldier actually being killed in combat.

 We used this test program to ultimately evaluate all the behaviors our GP’s, and
our contextual GP’s, produced. From it, we can say with certainty that the best of the
stack-based behaviors was superior to the best of the behaviors without stacks, as the best
stack-based behavior rated:

Normal GP, Stack-Based Functions Implemented:
Perfect test: 30%

Successful test: 74%
Finding the enemy: 99%

Getting killed: 19%

This was better than the 65% success rating the stackless behaviors obtained.

Contextual genetic programming fared well, relative to the best non-contextual
GP we tested. When contexts were predetermined, and based on a spatial decomposition,
the best individual we found to evolve had statistics of:

Contextual GP, with Manually Designed Spatial Contexts:

Perfect test: 32%
Successful test: 78%

Finding the enemy: 100%
Getting killed: 30%

 28

Unfortunately, stage-based decomposition, with predetermined contexts, reached
only a best performance of:

Contextual GP, with Manually Designed Stage-Based Contexts:

Perfect test: 31%
Successful test: 70%

Finding the enemy: 95%
Getting killed: 32%

 We tried two different kinds of parameter space with the automated context
evolution. One kind used only the X and Y coordinate of the soldier agent, and therefore
produced a spatial decomposition. Its best performance consisted of:

Contextual GP, Spatial Contexts Automatically Evolved:
Perfect test: 32%

Successful test: 74%
Finding the enemy: 99%

Getting killed: 32%

 The other parameter space we tested consisted of practically all the sensory data
available to the soldier. It managed a best performance of:

Contextual GP, Generic Contexts Automatically Evolved:
Perfect test: 33%

Successful test: 73%
Finding the enemy: 100%

Getting killed: 34%

 Every one of these behaviors was found after running the GP, or contextual GP,
over 24 hours on over 16 processors, at approximately one generation per processor per
minute.

In the end, the manually designed spatial decomposition of parameter space led to
the best individual we produced. However, this cannot make us discard the other
approaches, because further refinements in any of them could easily elevate its
capabilities beyond the watermark set by manually designed spatial contexts. All our
developed techniques scored within a small band of ability—70% to 79%—a slight, yet
unmistakable, improvement over the basic method.

 29

Accomplishments and Future Research
 In our research, we have demonstrated that the soldier problem is resilient to
traditional techniques of genetic programming, and we have shown that progress is
possible by changing the way our GP approaches the problem. Since the most impressive
gain in performance was associated with manually decomposing the problem space, this
would be the most natural place to extend the work described in this paper. There are
several important, unanswered questions about spatial decompositions in these kinds of
problems that could be the focus of future research. Some are: How different are the
behaviors that specialize for different areas? What decomposition (in terms of
configuration, number of contexts, and so forth) is the most appropriate for a given
environment? Can spatial decomposition be automated in an evolutionary way, or are
there principles on which a spatial decomposition of an environment can be formulated?
Is this a psychologically plausible method of context evaluation, and is that, in any case,
relevant?

 The behaviors evolved in our tests so far wouldn’t be very useful in training
simulations. Their behavior is unsophisticated, and the game they’re trained at is far less
complex than what would be required to engage human participants. In order to create a
GP to evolve behaviors for such an application, the problems we have faced would need
to be better understood. The three most significant problems we encountered are: how to
measure performance while dealing with multiple, complex, interacting goals, how to
decompose a complex problem into smaller and more easily solvable sub-problems, and
how to select the most useful set of functions from which behavior trees are built.

 Usually, performance measurements are easy to develop, because it is easy to
describe desirable behavior. While the goal of the soldier problem is straightforward, our
research suggested that a straightforward fitness function was inadequate for our purpose,
and that a function that rewards behaviors gradually while they slowly improve was
necessary. Our final formula succeeded in encouraging individuals to develop in the
direction we wanted them to go, but also might have discouraged creative solutions to the
problem with its micromanaging qualities. We do not know whether simpler or more
complex fitness functions lead to the development of better behaviors, only that the
simple functions we tried were insufficient and the complex functions were capable.

 The soldier problem is also burdened by its indeterminate gameplay, because of
which some behaviors may, through no fault of their own, fail or succeed. It may be
possible to develop a fitness function that adjusts a behavior’s score in a particular test
based on the difficulty of its encounter. Also, applying a single fitness function to a
collection of genes evolved by a contextual GP may be entirely inappropriate. It could be
better to have a separate fitness function for each context—somehow making evaluations
contextually dependent as well as behaviors—to improve the development of specialized
behaviors.

 We found automated problem decomposition to be particularly difficult, and our
contextual GP did not respond as well as we had hoped to our efforts to implement it.

 30

Progress in this area will be difficult and very valuable. First, it will be necessary to
determine exactly when problem decomposition is useful, something that hasn’t been
made completely clear yet. In the soldier problem, there are certainly several
fundamentally different problems that need solving—navigation and combat are the two
most significantly distinguishable processes involved, and it makes sense that a GP could
be better when the problem is broken up into at least those pieces, but it isn’t clear, for
instance, whether retreating rapidly from battle and withdrawing carefully from battle
ought to be evolved separately. Furthermore, the issue of how contexts are defined is far
from resolved, especially considering the success of the spatial decomposition over the
stage-based decomposition.

 Several tools could be useful in pursuit of solutions to those problems. Foremost
is the use of statistical methods such as factor analysis to determine the most significant
distinguishing parameters, based on which a decomposition could be automatically
proposed and evaluated. In human agent simulations such as the soldier problem,
cognitive psychology could also assist, by describing what sensory changes are necessary
for a person to shift from one frame to another, and in what cases such shifts are most
useful.

 Finally, designing a function set is one of the most fundamental steps in
developing a GP, and makes a tremendous difference to the success of the GP.
Employing functions that give individuals the ability to plan strategies and perform
sophisticated analyses of their environment and memory is critical. Unfortunately,
developing a rich function set, capable of dealing with a large amount of input and
available decisions, is difficult, and giving the GP more functions is not always the
answer. A larger function set also entails a larger and, perhaps, more difficult to navigate
solution space.

Macro functions, functions that provide complex behavior in a single node, might
be useful in this regard. Instead of having functions like “move forward” and “turn left”,
it might be better to have higher level functions such as “retreat from battle to a known
safe place” and “run to the nearest wall”. Expert knowledge could be used to form such a
function set; in the case of the soldier problem, we may gain from talking with military
strategists and trainers, and experienced soldiers, about how they analyze situations and
make decisions. We might be able to combine the expertise of several individuals in the
function set of a single GP, and evolve from it behaviors that represent not just the sum of
each expert’s knowledge, but the value of the interactions between the knowledge of
several experts.

 31

References

Koza, John R., Genetic Programming: On the Programming of Computers by Means of
Natural Selection, Cambridge, MA: The MIT Preopponent, 1992.

Luke, Sean, “Genetic Programming Produced Competitive Soccer Softbot Teams for
RoboCup97”, In Genetic Programming 1998: Proceedings of the Third Annual Genetic
Programming Conference. J. Koza et al, eds. Madison, WS: University of Wisconsin,
1998.

Pryor, Richard J., “Developing Robotic Behavior Using a Genetic Programming Model”,
Sandia Report: SAND98-0074, Sandia National Laboratories, 1998.

Pryor, Richard J., “Developing Maneuvering Behaviors for a Glider UAV Using a
Genetic Programming Model”, Sandia Report: SAND-2002-3147, Sandia National
Laboratories, 2002.

 32

Distribution

1 MS 0321 W. J. Camp, 9200
1 MS 0318 J. E. Nelson, 9209
40 MS 1110 R. J. Pryor, 9216
1 MS 9018 Central Technical Files, 8945-1
2 MS 0899 Technical Library, 9616

	Abstract
	Table of Contents
	Introduction
	Genetic Programming
	Program Morphology in Genetic Programming
	Genetic Operations
	Simulation Training

	The Soldier Problem
	The Fitness Function
	The Soldier Design
	The Soldier GP Function Set

	Advancements
	Developing a Superior Fitness Function
	Enhancement of Strategic Functions
	Contextual Genetic Programming (CGP)
	Genetic Operations with CGP
	Manually Defined Contexts

	Results
	Accomplishments and Future Research
	References
	Distribution

