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Abstract 
Genetic programming is a powerful methodology for automatically producing solutions 
to problems in a variety of domains.  It has been used successfully to develop behaviors 
for RoboCup soccer players and simple combat agents.  We will attempt to use genetic 
programming to solve a problem in the domain of strategic combat, keeping in mind the 
end goal of developing sophisticated behaviors for compound defense and infiltration.  
The simplified problem at hand is that of two armed agents in a small room, containing 
obstacles, fighting against each other for survival.  The base case and three changes are 
considered: a memory of positions using stacks, context-dependent genetic programming, 
and strongly typed genetic programming.  Our work demonstrates slight improvements 
from the first two techniques, and no significant improvement from the last.  
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Developing Close Combat Behaviors 
for Simulated Solders Using Genetic 

Programming Techniques 
 
 

Introduction 
 Consider that modern combat situations differ significantly from those known and 
researched by military strategists from previous generations.  Adversaries are more likely 
than ever to use sophisticated weapons and communication technologies, and modern 
battlefields resemble open fields no longer.  To maintain America’s military strength, our 
armed forces need to prepare themselves for combat in unique environments that resist 
the application of antiquated combat techniques.  More than ever before, it is important 
for our soldiers to train in a variety of environments against intelligent adversaries who 
use a variety of technologies.  Simulated combat, where soldiers compete against agents 
in virtual or augmented environments, is one available tool for providing that necessary 
training.  
 
Simulation Training 

 Simulation has many compelling advantages over real-life war gaming.  A 
training exercise in a simulated environment can be replayed multiple times with little 
additional cost.  Virtual environments permit training supervisors to review extremely 
detailed log files, which could lead to a better understanding of trainees’ errors.  Also, 
training supervisors can effect major structural changes in combat environments without 
concern for the cost of physically reconstructing a training environment, and in much less 
time.  
 
 Simulation also entails different costs than traditional wargaming.  In addition to 
the cost of purchasing and caring for the hardware required for realistic combat 
simulations, there would be a high cost in developing and maintaining the software that 
creates the simulation.  There would also be a significant cost in developing realistic, 
intelligent simulated adversaries.  Sandia National Laboratories is currently engaged in 
research that will help mitigate these costs.  One instance is the UMBRA system, which 
provides a physical simulation environment that can bring together models that vary 
tremendously in their size and complexity.  Another research effort, principally directed 
by Rich Pryor in organization 9216, Evolutionary Programming and Agent Based 
Modeling, seeks to develop a system to automatically produce simulated soldiers with 
intelligent combat behavior by using genetic programming and other evolutionary 
programming techniques.  
 
 This paper describes the most recent efforts of Rich and myself over the last year.  
We set out to build a system that develops sophisticated behaviors for soldier agents 
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automatically.  Because genetic programming has been successfully used in the past to 
create intelligent agents in similar domains, such as the RoboCup softbot competition 
(Luke, 1998), and has proven successful in previous experiments involving agents that 
must prioritize and balance several goals (Pryor, 2002), we decided to use genetic 
programming techniques in our system.  In this paper, we will document the processes 
used to create and refine that system, and our accomplishments; it will also describe the 
directions we would like to take the research, and what we believe should be possible for 
such a system to do.  
 
Genetic Programming 
 Genetic programming is a maturing methodology that has attracted the interest of 
hundreds of researchers in artificial intelligence and evolutionary algorithms.  Well-
developed descriptions of genetic programming can be found in previous papers in this 
sequence (see Pryor, 1998 and 2002), or in any of several books.  The seminal work in 
genetic programming, Genetic Programming: On the Programming of Computers by 
Means of Natural Selection, was written by John Koza, the methodology’s inventor, and 
is extremely accessible and informative.  We will include only the briefest of summaries 
here, in order to provide a reference against which the reader may compare the changes 
we made.  
 
 A program that employs genetic programming repeatedly creates collections, 
called populations, of programs.  These populations will hold anywhere between a few 
dozen to hundreds of thousands of individual programs.  Each time a genetic program (or 
GP) creates a population, it replaces its previous population.  Each iteration of this 
process is called a generation.  With the exception of the programs in the GP’s first 
population, which are randomly generated, all the programs in a population are 
constructed out of fragments of programs from the previous population, in a way that is 
similar to how the genetic material from a generation of a biological species is generally 
recycled from the genetic material of its preceding generation.  This analogy is the root of 
the convention that computer scientists use when they refer to genetic programming and 
similar methodologies as evolutionary, or genetic, algorithms.  (There is some delicacy in 
these naming conventions, for while some may refer to genetic programming as an 
instance of a genetic algorithm, the phrase “genetic algorithms” refers to an ideologically 
similar but distinct methodology.) 
 
 The real world contributes to natural selection by prohibiting individuals in a 
species from reproducing and thereby prohibiting their genetic material from contributing 
to subsequent generations of the species.  Similarly, a genetic program evaluates the 
individual programs in its populations and, when constructing a new population, prefers 
to use fragments of code from individuals that evaluated well over fragments of code 
from individuals that evaluated poorly.  As long as an individual program’s performance 
in these evaluations is based on its code, this process will lead to the proliferation of well-
evaluating programs in the GP’s population.  
 
 The evaluation function applied to the programs reflects some problem the user 
would like to see solved.  For instance, if the user would like to evolve a program to 
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control a UAV, and direct it to survey an area, the evaluation function—more commonly 
called the fitness (i. e., survival of the fittest) function—might simulate the flight of a 
UAV over some landscape, and return the amount of ground it surveyed.  (It should also 
return whether the UAV crashed.) Populations from later generations are likely to contain 
programs that instruct a UAV to cover a lot of ground, and not crash. 
 

The primary philosophy behind genetic programming should now be clear, 
although several details have been glossed over so far, such as how individuals in a 
population can represent programs, and how those programs are executed.  After all, a 
human programmer writes code in a programming language like C++, but it is quite 
unlikely that a program formed by gluing together fragments of C++ programs—even 
quite capable programs—will even compile, let alone perform the tasks of the previous 
programs, let alone perform those tasks in a better way! The standard solution to this 
problem, faced by many evolutionary programming methodologies, has been to encode 
programs in structures that are amenable to fragmentation and reconstruction.  The 
structure used by genetic programming is the tree. 
 
Program Morphology in Genetic Programming 

 In genetic programming, each individual is a tree (in the data structure sense), and 
each node in a tree is a function.  These individuals may be called programs (because 
they are sometimes executed), individuals (because they are generally found in a 
population), trees (because they are structurally represented as trees), and when the 
desired programs are used to control agents, they may also be called behaviors.  The 
nodes that make up trees may also be called atoms or functions, and a particular node’s 
children are either called its children, its parameters, or sometimes its branches. 
 

Every GP has a way of parsing, or interpreting, the trees used by its individuals.  
A GP needs to know what kind of atoms will be used inside its trees, and how to translate 
those atoms into behavior relevant to the problem the GP has been designed to solve.  
The set of all available functions used to build programs can be thought of as a kind of 
genetic alphabet.  The programmer of a GP decides which functions go into that alphabet.  
It is hopefully evident that the choice of functions used to create programs in this manner 
is an extremely important decision to make while designing a genetic program.  Different 
problems will almost certainly require different function sets.  Also, the set of functions 
chosen by a GP programmer to solve a problem is seldom obvious or unique.  Ideally, a 
great deal of knowledge, experience, and intuition goes into choosing a particular 
function set. 

 
The number of ways a GP could parse its trees is nearly as numerous as the 

number of problems one could use a GP to solve.  Here, I will not attempt to list all the 
different ways, but I will describe two problems and the ways a GP may parse its trees in 
order to solve them, in the hope that the descriptions will explain the variety of 
approaches genetic programming makes possible, and elucidate the claims already made 
about how a GP works.  
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Example One: Best-fit Functions 

Imagine that you have a collection of x-y data points, but you don’t know what 
function was used to create them.  There are many techniques you could use to find the 
function, and genetic programming is one.  To apply genetic programming, first decide 
what the role of the individual is: in this case, each individual shall represent a function f 
that takes a single input, x, and outputs a value, f(x).  Then, decide what the fitness 
function should be: in this case, for each individual f, it shall be the sum, for each data 
point (x,y), over the difference between the data point’s y value and the corresponding 
value f(x).  Finally, determine the GP’s function set: in this case, one possible function 
set consists of the functions +, -, *, /, ^, each of which has two children, the functions 
sqrt(), abs(), sin(), each of which has one child, and the “function” x, and a variety of 
constant values between -1.0 and 1.0, none of which have any children.  

 
In this way, each individual represents an arithmetic function on x.  The way the 

GP parses an individual’s tree is simple: the output of the program is the value returned 
by the node at the root of the tree, and each function’s parameters are provided by the 
values returned by its subtrees.  In this case, it may seem unreasonable to call each 
individual a program, because their operations are so clear and more commonly thought 
of as mathematical, but certainly they are programs—programs that take a single floating 
point input and produce a single floating-point output. 

 
A GP defined as above would produce population after population of candidate 

functions, and there would be a tendency for later populations to contain individuals 
whose functions fit the data points better and better.  If it is possible for a function to be 
constructed out of the mathematical operations described above to match exactly all of 
the data points, then it is also possible for this GP to find an exact solution to the 
problem.  However, it might be the case that there exists a mathematical function that 
matches exactly the data points, but which is also impossible to construct using the 
operations included in the function set.  In such a case, the GP would produce better and 
better approximations of the solution, but it would never “solve” the problem—get a 
perfect answer.  In order to solve the problem, it would be necessary to change the 
function set.  

 
In a case such as this, if we have access to the mathematical function that 

produced the data points, it would be clear how to change the function set.  However, in 
more complex problems, when we cannot be certain whether a perfect solution can be 
reached using a particular function set, the job of changing the function set is much 
harder, and the reasons why should be clear.  In fact, this is an important consideration 
that I will return to later in this paper, as it bears on the problem we have sought to solve. 
 
Example Two: Agents in a Simple Task Environment 

Let me provide another example of how a GP might operate.  Consider the 
problem of developing behaviors for an agent in a simulated 2-d environment in which 
there are randomly deposited resources.  Suppose that the goal of the agent is to pick up, 
move, and drop resources, so that after a certain amount of time, the environment has a 
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concentrated pile of resources instead of having them scattered around.  This is a 
complex problem with an unobvious solution, but the rules are simple, and the 
capabilities of the agent are limited, and so it lends itself well to genetic programming.  
Let each individual be a program that directs the behavior of the agent, and let the fitness 
function be a measure of the concentration of the environment’s resources after letting 
the agent act within the environment for a limited time, directed by the program of the 
individual being tested. 

 
How should the function set for this problem be constructed? Well, the agent must 

be able to sense its environment, and act in it.  Its functions should allow environmental 
analysis, and action.  Some descriptions of sensory functions that we would expect to find 
in a GP used to solve this problem are:  

 
• How many resources are right in front of me? 
• How many resources am I carrying now? 
 

Some action functions we’d expect to also find are: 
 

• Drop all my resources. 
• Pick up all the resources here. 
• Move forward. 
• Turn 90 degrees to the left. 
 

In order to construct behaviors for an agent out of these functions, we would need 
to adapt all of these qualities so that they could be combined in a tree format.  Another 
important factor to consider is that in standard genetic programming, one restriction on 
the function set is that every function must return the same data type.  This is because the 
operations used by a genetic program to manipulate program trees do so without 
considering the functions they are moving.  We’ll describe those operations shortly, but 
first we need to describe how the resource-gathering problem can be expressed in the 
language of GP.  This is especially important because our soldier problem is similar. 

 
Here is one way of making accessible the functionality we need.  Every function 

shall return to its parent a floating point value, so that the sensory functions mentioned 
above return reasonable values.  By default, whenever an action function is evaluated, it 
shall return 0. 0, but also immediately do its action as a side effect if possible.  In 
addition, we shall add a function, “If GT” that takes four subtrees as input, and evaluates 
and returns the value from its third subtree if the value of its first subtree is greater than 
the value from its second subtree, and evaluates and returns the value from its fourth 
subtree otherwise.  This function allows behaviors to take actions based on conditions.  
Also, we could add addition, subtraction, multiplication, MAX(..), and MIN(..) functions 
that take multiple inputs and provide the appropriate output, and a collection of functions 
that return useful constant values (perhaps between 0 and 100, say, or something on the 
scale of the concentration of resources in the environment). 
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This is a very different example than the data point matching example, but 
fundamentally we’re still using the same tools: a fitness function to evaluate the 
performance of programs, programs that are represented as trees, and nodes that 
correspond to functions that are appropriate within the problem domain.  The GP operates 
similarly in both cases, using the same operations to build individuals out of other 
individuals, and evolve effective answers. 
 
Genetic Operations 

 Genetic programs perform three operations to create new programs out of old 
programs.  They are reproduction, mutation, and crossover, and operate on a single 
program (in the cases of reproduction and mutation) or on a pair of programs (in the case 
of crossover).  Reproduction copies a program in whole from one population to the next.  
Mutation copies a program into the next population, but it also selects a subtree in that 
program, deletes it, and constructs a new, randomly configured, subtree in its place.  
Crossover selects a subtree in each program and exchanges them, putting the newly 
formed pair of programs into the next population.  These operations preserve and 
reconfigure genetic material from one generation into the next. 
 
 It is important to consider the strategy of selecting which programs get operated 
upon.  Genetic programming works by selecting better—often called fitter, in 
acknowledgement to the fitness function—programs more often than worse, or less fit, 
programs.  An example of such a selection strategy is called tournament selection.  When 
a genetic program that employs tournament selection intends to choose a program to 
perform reproduction, mutation, or crossover on, it considers two programs chosen at 
random from its population, and chooses the fitter program.  This strategy makes 
selection biased towards fitter programs, which is desirable.  Other selection strategies 
might sort all the programs in a population by fitness, and then use that ordering as the 
basis for preferred selection of fitter programs—for instance, by selecting from the top 
20% of programs, 80% of the time.  There are a variety of selection functions, but they all 
bias program selection towards fitter programs. 
 
 It should be clear by now that there are many ways to configure the methodology 
of genetic programming to a particular problem, and many choices that must be made 
when designing a genetic program.  All these decisions are important, and can change the 
efficiency of a genetic program when applied to a specific problem.  Unfortunately, there 
is no “best” configuration for genetic programming—one implementation may perform 
well on problem A and poorly on problem B, and another may do the opposite.  In order 
to choose an implementation wisely, a genetic program’s designer should take into 
consideration his or her specific problem definition. 
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The Soldier Problem 

 Our goal is to develop behaviors appropriate for simulated soldiers in a combat 
environment.  An image of the simulated environment follows: 
 
 

 
 
 

Figure 1. An Image of the Simulated Close Combat Environment 
 
 
 

The room is a discrete, square grid, twenty units on a side, with four outlining and 
three interior walls.  The walls obstruct the sight of the agents, and also prevent bullets 
from passing through them.  The top of the room (as portrayed in Figure 1), by 
convention, is “north,” and the other directions follow.  Two agents play through the 
simulation, a “good soldier” and a “bad soldier.”  Each soldier occupies one non-wall 
grid location and faces one of eight directions.  Time is discretized into steps; during a 
step, an agent may turn as often as it wishes and may take one action: move (forward, to 
either side, or backward) to an adjacent square, shoot, or do nothing.  An agent that is 
facing a grid corner direction, such as NE, will move “farther” in a single timestep than 
an agent facing a direction such as N, but that effect is ignored for the sake of simplicity. 

 
Each agent is equipped with a gun, although the skills involved in aiming it have 

been abstracted away.  The factors involved in determining whether an agent successfully 
shoots its opponent are: how far apart the agents are, whether the shooter has been 
injured, whether the target is moving, and, naturally, whether the shooter can see the 
opponent.  (Agents cannot shoot through walls.) 

 
Agents can see in a 135-degree arc centered in the direction they are facing.  An 

agent that can see its opponent can also determine the direction its opponent is facing.  
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An agent cannot hear another agent move; they can, however, hear another agent shoot.  
An agent that is shot once is considered injured, and an agent that is shot twice is 
considered dead.  Mobility is not compromised when an agent is injured, although gun 
accuracy is reduced.  The test ends when either agent is killed or when 100 timesteps 
have elapsed. 

 
When a simulated battle begins, each agent is placed into the room in a random 

location, facing a random direction.  If the agents are placed into the room so that they 
could see each other without moving (that is, if a wall doesn’t separate them), then one of 
the agents is relocated.  In each timestep, each agent may act, making their decision by 
analyzing the sensory information available from the current timestep, as well as any 
stored state that the agent might have, by executing their program.  Each agent 
remembers whether it has seen its opponent, and if so, where the opponent can be found; 
also it remembers whether it has successfully injured its opponent, and knows whether it 
is injured.  Agents also maintain additional memories, as will be described later. 

 
In this simulation, the evolved programs always control the good soldier.  A 

simple and effective script always controls the bad soldier.  The bad soldier does not 
move around the playing field; it turns towards any gunshot it hears, and always fires on 
the good soldier if the good soldier is visible.  
 
The Fitness Function 

The goal of the genetic program is to produce a program that is sophisticated 
enough to win more simulated battles than it loses.  Therefore, we want to use a fitness 
function that returns high values of fitness whenever it is passed a program that wins 
more often than it loses, or ties.  Throughout the course of our experimentation, we 
developed many fitness functions, but they all were of the form:  

 
1. Gather performance statistics from many (between fifty and a thousand) 

simulations. 
2. Perform a function on those statistics that returns a higher value when desirable 

behavior, such as winning more often than losing, occurs more often, and a lower 
value when undesirable behavior, such as spinning in circles or getting killed, 
occurs more often. 

3. Return that value as the program’s fitness. 
 

There are two points that we would like to make clear from what we just 
described.  First of all, our fitness functions, even the functions that run through a 
thousand simulations to evaluate a single program, cannot be perfect measures of a 
program’s fitness.  Ideally, the fitness function would test every possible initial 
condition—and in some problems, that is possible—but in our problem, there are easily 
over a hundred thousand (perhaps nearly a million) initial conditions, so we settled for 
what we hoped would be a representative sample.  Additionally, the simulation relies on 
some probabilistic effects, such as gunfire.  These effects lead to some imprecision in the 
fitness function, but our intent in creating a fitness function was to measure the 
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approximate ability of each program, and use enough tests to reduce that measurement’s 
imprecision while keeping the computational requirements of the evaluation low. 

 
Secondly, because we used population sizes of between 200 and 20000 programs, 

and because each program might need to be tested in the simulator fifty times, and 
because each test in the simulator required up to one hundred timesteps, and 
environmental information needed to be calculated every timestep, we chose to use look-
up tables for most of our environmental calculations.  Tests performed during our 
research determined that using look-up tables speeded up the genetic program by a factor 
of five.  Nevertheless, our optimized program is extremely computationally intensive; 
assuming that every program execution results in a mere hundred function calls before 
deciding on an action (our programs contain between 300 and 2000 functions, or nodes 
on the tree), and that tests last on average a mere twenty timesteps, and that only fifty 
tests are used to evaluate a program, and that our populations consist of a thousand 
programs, a billion function calls will occur every ten generations.  (Note that our genetic 
programs typically ran for hundreds of generations; pretty soon we’ll be talking about 
serious computational requirements!) 

 
In the end, our most powerful genetic program is capable of producing programs 

that win the simulator battles between 75% and 79% of the time.  Getting to this point 
took a great deal of experimentation, and a great deal of learning.  To explain what we 
learned, we will describe what technologies we began with, and then examine each 
change we made and the results of that change. 

 
The Soldier Design 

 The project began as the third phase in a multiyear effort to evaluate genetic 
programming as a methodology that could be used for developing soldier behaviors.  The 
first phase investigated the use of genetic programming to produce behaviors for simple 
robots.  A full account of that research can be found in Pryor, 1998.  The second phase 
determined that genetic programs were capable of developing agent behaviors that 
pursued several goals simultaneously.  For more details on that work, involving the 
creation of behaviors that control UAVs, see Pryor, 2002.  The third phase would lead to 
the actual development of soldier behaviors through genetic programming.  
 
 The genetic programming system we began with came from UAV glider research.  
It was written in C, used some special memory allocation techniques, and could run on a 
multi-processor machine.  In order to make the system work on the soldier problem, we 
changed its evaluation function so that it would create an instance of the soldier 
simulation instead of the glider simulation, and we changed its function set so that 
evolved programs could control soldier agents.  We also added code that created look-up 
tables for the simulation, as well as a mechanism that could read and write the tables to 
disk, so that they wouldn’t have to be calculated every time the GP ran. 
 
 One additional feature that we inherited from the UAV code had to do with the 
soldier’s data structure.  The data structure used by the UAV GP to represent the UAV 
included an array of registers that the behaviors could use to store and recall arbitrary 
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numeric data.  We included that functionality in our genetic program, and augmented it 
by reserving the first three registers for important data: the position and orientation of the 
bad soldier.  The simulation initializes those registers to zero at the beginning of each 
test.  When the good soldier finds the bad soldier, the latter’s positional information is 
stored in those registers.  In other respects, those registers are treated as read-only. 
 

The agent structure we began with looked like this: 
  

struct Soldier { 
long  SoldierID; 
long  SoldierXPOS; 
long  SoldierYPOS; 
long  SoldierDIR; 
long  SoldierSTAT; 
long  SoldierACTION; 

 long  SoldierSEENENEMY; 
 long  SoldierSHOTENEMY; 
 long  SoldierLASTMOVE; 
     double Register[NUMOFREG]; 
} 

 
Although the memory concepts of “have I seen my enemy” are clearly boolean in 

nature, the variables SoldierSEENENEMY and the other boolean-like variables are declared 
as longs, and the function implementations query their state using statements such as  

 
if (SoldierSEENENEMY == 1) 
... 

 
in order to provide for possible extensions of functionality.  The variable SoldierSTAT 
described the health of the soldier agent, which could be: healthy, injured, or killed.  The 
variable SoldierACTION was used by the behaviors as output; it encoded the chosen 
action, which could be: do nothing, shoot, move forward, move backward, move left, 
move right, or undo the last movement. 
 

We also directly used the node structure from the UAV genetic program, and 
reused the node’s data member regIndex in function 14, DISTANCE IN DIRECTION.  The 
node structure we began with looked like this: 

 
struct Atom { 
    long     atomKind; 
    double   atomValue; 
    long     regIndex; 
    long     atomHitCount; 
    struct   Atom *ptr1; 
    struct   Atom *ptr2; 
    struct   Atom *ptr3; 
    struct   Atom *ptr4; 
    struct   Atom *ptr5; 
    struct   Atom *nextFree; 
}; 
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The atomKind member described the type of function the node represented, the 
atomValue member held whatever internal floating-point parameter was required by the 
function, if any (the constant value in the case of function 25, for instance), and the Atom 
pointers led to the node’s children, or were NULL.  The atomHitCount member kept 
track of how frequently the node was evaluated in the tree, for debugging and statistical 
purposes. 
 
The Soldier GP Function Set 

Our initial function set included 29 functions, although some functions performed 
multiple tasks.  19 of those 29 functions take no parameters.  A table describing all 29 
functions follows. 

Table 1.  List of Functions Originally in the Soldier GP 
 

 
Index 

 
Name 

 
Description 

Number of 
Children 

1 RETURN Root node.  This node is always and only 
found at the root of program trees.  Executes 
and returns the value from its first child.  
The first child leads to the primary tree. 
Children 2 through 5 lead to the ADF 
subtrees. 

5 

2 ADD Returns the sum of its two children. 2 
3 SUBTRACT Returns the difference of its two children. 2 
4 IFGTZ Child 1 is evaluated, and if greater than zero, 

this node evaluates and returns the results of 
child 2; otherwise, it evaluates and returns 
the result of child 3. 

3 

5 IF I AM 
HURT 

If the soldier is injured, this node evaluates 
and returns child 1; otherwise, child 2. 

2 

6 IF I CAN SEE 
IT 

If the soldier can see its opponent, this node 
evaluates and returns child 1; otherwise, 
child 2. 

2 

7 IF I HAVE 
SEEN IT 

If the soldier has seen its opponent, this 
node evaluates and returns child 1; 
otherwise, child 2. 

2 

8 IF I HAVE 
HURT IT 

If the soldier has injured its opponent, this 
node evaluates and returns child 1; 
otherwise, child 2. 

2 

9 IF WE SEE 
EACH 
OTHER 

If the soldier can see its opponent, and its 
opponent can see it, this node evaluates and 
returns child 1; otherwise, child 2. 

2 

10 STORE IN 
REGISTER 

Returns the value of its single child but also 
stores this value in the register specified in 

1 
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Index 

 
Name 

 
Description 

Number of 
Children 

the node header, in regIndex. 
11 MY X POS Returns the soldier’s X position. (1-19) 0 
12 MY Y POS Returns the soldier’s Y position. (1-19) 0 
13 MY 

DIRECTION 
Returns the soldier’s direction. (1-8) 0 

14 DISTANCE 
IN 
DIRECTION 

Returns the distance between the soldier and 
the closest wall in the direction specified in 
the node header, in regIndex; this specified 
direction is relative to the soldier’s direction. 

0 

15 TURN LEFT Turns the soldier 45 degrees CCW. After 
turning, if the soldier can see its opponent, 
then this function returns a value of 1.  Else, 
0. 

0 

16 TURN RIGHT Turns the soldier 45 degrees CW.  After 
turning, if the soldier can see its opponent, 
then this function returns a value of 1.  Else, 
0. 

0 

17 TURN 
AROUND 

Turns the soldier 180 degrees.  After 
turning, if the soldier can see its opponent, 
then this function returns a value of 1.  Else, 
0. 

0 

18 MOVE 
FORWARD 

Moves the soldier forward one grid space.  
This function also terminates the behavior 
tree execution. 

0 

19 MOVE 
BACKWARD 

Moves the soldier backward one grid space. 
This function also terminates the behavior 
tree execution. 

0 

20 MOVE LEFT Moves the soldier left one grid space. This 
function also terminates the behavior tree 
execution. 

0 

21 MOVE 
RIGHT 

Moves the soldier right one grid space.  This 
function also terminates the behavior tree 
execution. 

0 

22 UNDO MOVE Moves the soldier to the previously vacated 
grid space.  This function also terminates the 
behavior tree execution. 

0 

23 SHOOT  Shoots at the opponent, if visible.  If the 
opponent isn’t visible, the soldier shoots 
anyway, but this only has the effect of 
producing sound.  This function terminates 
the behavior tree execution. 

0 

24 RECALL 
REGISTER 

Returns the value of the register specified in 
the node header. 

0 
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Index 

 
Name 

 
Description 

Number of 
Children 

25 VALUE Returns the value stored in the node’s 
atomValue. 

0 

26 ADF1 Calls ADF1 and returns its value. 0 
27 ADF2 Calls ADF2 and returns its value. 0 
28 ADF3 Calls ADF3 and returns its value. 0 
29 ADF4 Calls ADF4 and returns its value. 0 

 
 To clarify: functions that end program execution do so after effecting the 
appropriate side effect.  Also, ADFs are important constructions that can be used by 
genetic programs to provide some of the advantages of code reusability.  When a 
program is executed, execution is passed to the root node, which is always the RETURN 
function.  It has five children, and as described above, its first child is always evaluated.  
However, whenever an ADF terminal function is executed, control goes to a child of the 
RETURN node—so that when ADF1 is executed, RETURN’s second child is executed, 
and ADF1 returns the value returned by RETURN’s second child.  This has the effect of 
allowing the genetic program to store code for repeated use, since any ADF terminal 
function may be used several times in the primary subtree. 
 
 There is some finesse required to use ADFs in genetic programming.  Imagine 
what would happen if one of the ADF subtrees included a call to another ADF subtree, 
which included a call to the first ADF subtree!  The genetic program has to be careful to 
prevent recursive ADF calls from happening, or else a program’s execution might never 
terminate.  Our genetic program manages that responsibility by checking each newly 
constructed program for ADF calls in ADF subtrees, and replacing any that it finds with 
other, harmless, terminals.  However, our genetic program does not distinguish between 
ADF subtrees and any other subtree while performing its genetic operations, so code 
from ADFs and primary subtrees can mix. 
 
 The last major component of the UAV GP that we changed was its fitness 
function.  We wrote a new fitness function that rewarded individuals for doing everything 
that we considered valuable, and punished behaviors for doing things that we considered 
disadvantageous.  The list of good things included: moving around the room, seeing the 
opponent, shooting the opponent, killing the opponent, winning the combat without being 
injured, and winning the combat sooner rather than later.  The list of bad things included: 
being shot, and being killed.  At first, we used a point system that rewarded each of these 
behaviors with different numbers of points.  These numbers were: 
  

1/20 pt for having moved around the room  
10 pts for having seen the opponent  
50 pts for having shot the opponent  
50 pts for having killed the opponent  
50 pts for having killed the opponent without being shot by it  
1/2 pt for each extra moment of time at a won simulation’s end 
-15 pts for being shot by the opponent  
-80 pts for being killed by the opponent 
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To find the fitness of a program, the GP would run through 120 simulations, 

scoring each one using the formula above, and giving the individual its average score as 
its fitness.  When selecting programs for genetic operations, the genetic program 
employed tournament selection: considering two programs, chosen at random from the 
population, and choosing the one with higher fitness. 
 
 We ran the genetic program on two systems: a dual processor PC with a gigabyte 
of memory, and a CPlant cluster, where we used between four and sixteen processors.  
On the PC, our populations held 2000 individuals, and on the cluster, the GP evolved up 
to 32,000 individuals simultaneously.  We discovered the best behavior on the cluster, 
which won its battles about 60% of the time, and won battles without being injured about 
30% of the time.  We did not feel that this was a success—we believed that at least a 90% 
success rate was possible—and so we began to consider what was limiting behavior 
development, and how to address those limitations. 
 
 

Advancements 

Developing a Superior Fitness Function 

 An immediate concern of ours was the fitness function we employed to score 
individuals.  By experimenting with its formula, we eventually discovered a function that 
encouraged the GP to evolve better behaviors.  Again, the GP ran a large number of 
simulations, and counted the number of times the soldier was able to find the enemy, kill 
the enemy, and kill the enemy perfectly.  It also counted the number of times it failed to 
kill the enemy, and how often it died in combat. 
 
 The behavior was then assigned a fitness based on one of three formulas, designed 
to encourage the development of desirable behaviors in a forgiving way.  In the 
beginning, it was most important for behaviors to move around the environment and find 
the enemy soldier, so if the soldier wasn’t able to find its enemy more than 50% of the 
time, its fitness would be exactly the probability (between 0.0 and 0.5) of it locating its 
enemy.  If the soldier was able to find its enemy more than half of the time, then its 
fitness also began to depend slightly on its combat ability, but still mostly on its ability to 
find the enemy.  The formula we used for this was: 
 

fitness2 = 5 * (F1 - F2) + S1 + 2 * P1 + fitness1 
where 
 F1 = # of times the soldier finds the enemy soldier 
 F2 = # of times the soldier fails to find the enemy soldier 
 S1 = # of times the soldier kills the enemy soldier 
 P1 = # of times the soldier kills the enemy soldier without being hurt itself 
 fitness1 = the probability (between 0.0 and 1.0) of the soldier locating the enemy 
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 Finally, once a behavior could find the enemy soldier more than 90% of the time, 
the focus shifted to evolving strong combat ability.  The final formula used in this case is: 
 

fitness3 = [300 * (P1 – (D1 + S2))] + [100 * (S1 – (D1 + S2))] +  
[10 * P1] – [10 * F2] + fitness2 

where 
 D1 = # of times the soldier is killed by the enemy soldier 
 S2 = # of times the soldier fails to kill the enemy soldier 
  

This fitness function effectively guided behaviors, and we witnessed an 
improvement to a 65% success rate.  We had hoped for much more, but began to believe 
that the solution that would take us to 90% had to involve a more fundamental change. 
 
Enhancement of Strategic Functions 

 One of the fundamental limitations we first sought to remove was the limited 
long-distance planning mechanisms available to the evolved soldier behaviors.  In each 
time step, behaviors could decide only to move one unit distance in any direction.  They 
were, of course, capable of moving long distances, but not as the result of a single 
decision—a long distance movement could be built only out of a sequence of decisions to 
move short distances.  We believed that the ability to decide, in a single calculation, to 
move a long distance should be available to the behaviors, and implemented a memory 
module, similar to the registers, that stored grid locations.  It held two stacks of positions, 
and each could be accessed and modified through the execution of new functions that we 
added to the function set.  The two stacks were named IHaveBeen and IWannaGo, loosely 
after their predicted use.  The ability to store and retrieve arbitrary positions was 
immediately useful in the sense that we were also able to develop a powerful function 
that calculated the nearest position, safe from the enemy soldier, as long as the good 
soldier had previously seen its opponent.  
 

We also believed that easier access to the soldier’s own position would be useful, 
to facilitate the development of behaviors that were specific to regions of the room.  That 
concern was addressed with the introduction of two new functions, each of which 
controlled tree execution based directly on the soldier’s position.  Finally, because of the 
large number of newly introduced functions that had important side effects, we 
introduced two functions that simply passed control to either all their children, or one of 
their children, chosen randomly during execution.  All these new functions are included 
in a table, here. 

Table 2.   List of Functions Added to the Soldier GP during Strategic 
Enhancement 

 
 

 
Index 

 
Name 

 
Description 

Number of 
Children 

30 DO TWO 33% of these functions (chosen at creation, 2 
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Index 

 
Name 

 
Description 

Number of 
Children 

not during execution) will pass execution to 
one of its children, and return its output.  
The rest will execute child 1, then execute 
child 2, and return the maximum of their 
outputs. 

31 DO THREE 33% of these functions (chosen at creation, 
not during execution) will pass execution to 
one of its children, and return its output.  
The rest will execute child 1, then child 2, 
and then child 3, and return the maximum of 
their outputs. 

3 

32 IFXGT If the soldier’s X coordinate is greater than 
this node’s regIndex (chosen at creation 
randomly between 1 and 20), execute and 
return the output from child 1.  Otherwise, 
child 2. 

2 

33 IFYGT If the soldier’s Y coordinate is greater than 
this node’s regIndex (chosen at creation 
randomly between 1 and 20), execute and 
return the output from child 1.  Otherwise, 
child 2. 

2 

34 IF IWG 
CLOSE 

If the top position on the IWannaGo stack is 
less than 2 grid spaces away, execute and 
return the output from child 1.  Otherwise, 
and if the stack is empty, child 2. 

2 

35 IF IHB 
CLOSE 

If the top position on the IHaveBeen stack is 
less than 2 grid spaces away, execute and 
return the output from child 1.  Otherwise, 
and if the stack is empty, child 2. 

2 

36 PUSH MY 
POSITION 

Pushes the soldier’s current position to the 
top of the IHaveBeen stack. 

0 

37 PUSH 
TARGET 
POSITION 

Pushes a grid space onto the IWannaGo 
stack.  This space is calculated using this 
node’s regIndex variable as a direction, and 
its atomValue variable as a distance, and 
making them relative to the soldier’s 
position and orientation. 

0 

38 DISTANCE 
TO IHB 

Returns the distance between the soldier’s 
current position and the top IHaveBeen 
position.  Returns 0.0 if that stack is empty. 

0 

39 DISTANCE 
TO IWG 

Returns the distance between the soldier’s 
current position and the top IWannaGo 
position.  Returns 0.0 if that stack is empty. 

0 
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Index 

 
Name 

 
Description 

Number of 
Children 

40 PUSH SAFE 
POSITION 

If the soldier has seen its opponent, this 
pushes onto the IWannaGo stack the closest 
position that is visible to the soldier, and that 
its opponent cannot see. 

0 

41 TURN TO 
IHB 

If the IHaveBeen stack is not empty, this 
causes the soldier to turn towards its top 
position.  After turning, if the soldier can see 
its opponent, then this function returns a 
value of 1. 

0 

42 TURN TO 
IWG 

If the IWannaGo stack is not empty, this 
causes the soldier to turn towards its top 
position.  After turning, if the soldier can see 
its opponent, then this function returns a 
value of 1. 

0 

43 MOVE TO 
IHB 

If the IHaveBeen stack is not empty, this 
causes the soldier to move towards its top 
position.  This function also terminates the 
behavior tree execution. 

0 

44 MOVE TO 
IWG 

If the IWannaGo stack is not empty, this 
causes the soldier to move towards its top 
position.  This function also terminates the 
behavior tree execution. 

0 

45 POP IHB If the IHaveBeen stack is not empty, this 
pops the top position off the stack. 

0 

46 POP IWG If the IWannaGo stack is not empty, this pops 
the top position off the stack. 

0 

 
 Although making these changes fundamentally changed the operation of the 
soldier behaviors, we did not see much improvement in the fitness, or level of 
sophistication, of the behaviors.  We witnessed a slight improvement in the success rate, 
from 65% without stacks to 72% to 74% with them, but the results were not as dramatic 
as we would have liked.  In part this was probably due to the broadening of the search 
space of programs that the GP has to navigate, because with more functions, and more 
node types, there are more possible trees.  However, we noticed no pronounced 
slowdown in program evolution, so those effects were most likely not the sole cause for 
the mediocre gains.  
 

We believed our problem was that we had not yet confronted the core problem 
preventing our GP from finding good solutions.  While the older UAV GP was successful 
at developing behaviors that optimized towards several goals simultaneously, the soldier 
problem had more complicated and interrelated goals that required a variety of behaviors, 
and when we reflected on this fact, we thought that the GP design that solved the UAV 
problem might not be able to solve the soldier problem at all.  We began to believe that 
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evolving a single program that provided effective behavior for each subtask was too 
difficult, but that a collection of programs, each specialized for a particular task, could, 
when taken together, provide the necessary amount of sophistication to make behaviors 
that succeeded at the soldier problem 90% of the time.  

 
 But how could a new GP, a contextual GP, work with contexts? We considered 
two options: describe the different contexts by hand, or let the definitions of the contexts 
evolve themselves.  A contextual GP, trying to evolve contexts automatically, and then 
evolve specialized behaviors for each context, could be even more computationally 
expensive than a traditional GP.  On the other hand, if we provide the GP with contexts 
designed by humans, we could decrease the computational requirements of evolving 
complex behaviors, but also sacrifice the useful qualities that depend on the GP 
discovering solutions automatically.  In the end, we tried both approaches. 
 
Contextual Genetic Programming (CGP) 

 We had to develop a new framework for doing genetic programming that worked 
with contextually specific behaviors.  We introduced several new classes of objects into 
the GP ecosystem: genes, each of which was defined as a context and a behavior paired 
together, and individuals, which were collections of genes.  In some tests, the number of 
genes per individual differed amongst individuals in a population, and in others, the 
number of genes per individual was fixed.  In any case, we needed to develop new 
implementations for the familiar tasks of selection, mutation and crossover that respected 
genes and the contexts and behaviors that they consist of, as well as a new operation. 
 
 First, it is necessary to describe how contexts are implemented.  Again, with this 
task, we had to experiment to find an appropriate method of implementation.  We settled 
on a method that defined contexts using points in a high dimensional space, in which 
each dimension corresponded to a particular environmental or internal measurement.  A 
context was assigned a single point in that space; at each time step, the soldier agent 
would decide which context it was in by calculating the distance from its state, 
environmental and internal, to every one of its contexts’ points, and the context 
associated with the closest point won out.  Naturally, we had to be careful in how we 
defined the distance metric for this space—some environmental measurements, such as 
coordinate position, had values that could vary between 1 and 20, and others, such as 
“have I been injured” and “can I see the enemy soldier”, had Boolean values that could 
only take on one of two distinct values.  To calculate the distance between points in this 
space, we used a metric that consisted of a sum of scaled differences, and we 
compensated for the varying ranges by applying scalar factors to each dimension that 
weighted each one roughly the same. 
 
 Behaviors did not have to change at all—the tree structure used in our previous 
genetic program was appropriate.  
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Genetic Operations with CGP 

 We had to change the way genetic operations affected the more structurally 
complex individuals in keeping with the reasons we developed our contextual approach. 
 
Selection 
 The operation of selection, on the level of individuals, did not have to change.  
Since individuals still had their own fitness values, in order to select one individual, two 
individuals were pulled out of the population, and whichever one had a higher fitness 
rating was selected. 
 
Crossover 
 Crossover, typically considered the most important tool in genetic programming, 
had to change to work with genes and contexts.  Its early stage remained the same—first, 
using the selection operator, select two parent individuals.  The rest, however, is 
different.  The next task is to randomly choose one individual to be the recipient of the 
others genetic material.  Then, within the chosen individual, choose a gene at random to 
be the recipient in the crossover.  At this point, one gene in one individual has been 
chosen, so one context and its behavior tree have been identified.  Next, we choose one of 
the genes in the other individual to be the donating participant in the crossover, but this 
decision can be made in one of two ways: the donor gene may be randomly chosen, 
independent of the first chosen gene, or alternatively, the selection of the donor gene may 
be influenced by the particular recipient gene.  In our contextual GP, both methods are 
utilized, with the program randomly determining one or the other as the operation is 
executed.  
 

The particular method of influence exerted by the first gene upon the second is as 
follows: the chosen donor gene is the one whose context’s point is the closest to the point 
of the first gene’s context.  We designed this based on our (hopefully reasonable) 
assumption that it would be more useful to exchange code between behaviors that are 
trying to solve similar problems than it would be to exchange code between behaviors 
that may be specializing towards different tasks.  The fact that two contexts have points 
that are close together implies that the behaviors paired with each context are trying to 
solve similar problems.  Naturally, it is also conceivable that behaviors optimized 
towards different tasks could still benefit from sharing code, so both types of decisions 
are used, although the first occurs more often (60%). 

 
 The procedure for exchanging code between behaviors is the same as in classical 
genetic programming, but when we allowed the GP to evolve its contexts automatically, 
we also implemented a procedure to “crossover” contexts.  The procedure described 
above is used, and in addition to receiving genetic material from the donor gene, the 
recipient gene’s context is also changed by moving its point to the midpoint between its 
old position and the position of the donor gene’s point.  For non-continuous dimensions, 
the midpoint is rounded to the nearest valid value.  (For Boolean dimensions, this is 
rather boring; if the two points involved differ for a particular Boolean value, then the 
final value is randomly true or false.)  
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Mutation 
 We changed mutation predictably, while taking into consideration one important 
factor.  Mutation proceeds as follows: the selection operation is performed to choose one 
individual with good fitness.  After that, one of two procedures take place—either a 
single gene is randomly chosen for mutation, or a collection of genes is chosen.  The 
rationale for this is that smaller changes, such as those limited to a single gene, are less 
likely to be destructive to an individual, and more likely to realize incremental gains.  
However, without the ability to make several changes to several genes simultaneously, 
some high fitness regions of the answer space may be inaccessible to the genetic search.  
This phenomenon is easily illustrated by a simple example.  Consider an individual with 
two genes, each of which can have one of two behaviors. 
 
 

(State of the individual: fitness of 
the state) 

Context X with 
Behavior 1 

Context X with 
Behavior 2 

Context Y with Behavior a State 1a: Fitness 10.0 State 2a: Fitness 5.0 
Context Y with Behavior b State 1b: Fitness 5.0 State 2b: Fitness 30.0 

 
 

In the table above, if we restrict the mutation so that is modifies only one gene at 
a time, an individual in state 1a will almost certainly never reach state 2b, although 2b is 
a more fit state (The indeterminacy of the selection operation could permit an individual 
in states 2a or 1b to survive and mutate, but this is unlikely).  Therefore, it is important to 
permit both single-gene and multiple-gene mutation.  

 
Regardless, when a gene is chosen for mutation, its behavior tree is always 

mutated, and when the GP is allowed to automatically evolve contexts, there is a small 
chance that the gene’s context is also mutated, by moving its point a small distance in a 
random direction. 
 
Specialization 

Although the genetic processes described so far encompass the functionality 
necessary to improve extant genes, they do not permit an individual to further specialize 
itself and create new genes.  We also developed a procedure for an individual to add a 
gene to its collection and refine its specialization, when we want the GP to specialize 
itself automatically.  This process is weighed down by a number of complications, but we 
developed solutions that mitigate those problems. 

 
One of the challenges in creating a new gene for an individual is that the new 

gene will necessarily take precedence over the extant genes within some region in 
measurement space, and it will almost certainly have a negative influence on the fitness 
of the individual, since the new behavior tree will be random and, probably, 
inappropriate.  In order to confront this problem, we would like to use some kind of 
evolutionary competition to evolve a new, useful gene for an individual.  One can 
imagine how such a competition could be held: a population of genes could be 
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constructed, then, the fitness of each gene could be calculated by measuring how well (or 
how poorly) it assists the individual in its task.  

 
This would make sure that the newly introduced gene doesn’t badly harm the 

specializing individual, but there’s another problem: if the candidate genes permitted 
their contexts to evolve with their behaviors, one way of optimizing the fitness of the new 
gene could be to evolve its context to represent as small a volume in measurement space 
as possible, by mutating its context’s point into a corner, or underneath an extant 
context’s point, and thereby minimize its use in the individual! This wouldn’t serve the 
purpose of refining the specialization of the individual, since behaviors that occur 
infrequently wouldn’t be subject to much, if any, evolutionary pressure, and wouldn’t 
improve over time.  

 
We managed to use a procedure similar to the one just described, but to confront 

the problem of contexts drifting towards minimal use, we fixed the position of the genes’ 
contexts in the beginning of the evolutionary competition.  That is, when we generated 
the initial population of genes, we created a number of sub-populations of genes, each of 
which shared a common context.  Then, in the first (approximately) hundred generations, 
we held the shared contexts constant, and permitted behaviors to only swap genetic 
material with others within their sub-population.  By the end of this first stage of 
evolution, we had a collection of behaviors that were fit within the context they were 
given, and thus could withstand the genetic force that would otherwise cause them to drift 
into obscure regions of measurement space. 

 
During this process, it was possible for the GP to discover that no new gene 

augmented the fitness of the specializing individual.  This was rare early on, but as 
individuals became more and more specialized, it would happen more often.  In such a 
case, the GP gave up searching after detecting that no progress was being made after a 
certain number of generations of trying (for example, we used a threshold of 200 
generations).  The specialization procedure would quit, and the original individual would 
survive, unchanged. 
 
Manually Defined Contexts 

 When we provided contexts for the GP manually, we were able to make more 
human-understandable separations between contexts than when contexts evolved 
automatically.  This kind of change to the GP is a double edged sword, in that we may be 
able to effect some positive refinements that are rooted in our intuitive understanding of 
the problem, but in doing so we might overlook factors that could be discovered by the 
GP on its own, and therefore hinder the development of solutions that lie outside of our 
intuitive understanding of the problem.  Nevertheless, we felt it would be productive to 
experiment and see whether defining contexts manually could contribute to the GP.  We 
tried two approaches: setting up a collection of contexts that could have been evolved 
using the automatic procedure described above, but that would make sense intuitively to a 
person trying to decompose the soldier problem, and setting up contexts in a way 
inaccessible to those mechanisms, but still in a human-understandable way, which was to 
assign a context to each room in the simulated area, as illustrated below. 
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Figure 2: An image of the simulated environment, with room contexts highlighted 
 
 Figure 2 shows how we decomposed the soldier problem into the problem of 
finding behavior appropriate for “rooms” in the environment.  This sort of decomposition 
would be difficult to obtain with the automated context evolution described above.  In the 
other method, we separated the task into five stages and evolved a behavior for each 
stage.  The stages we identified were:  
 

• Search, when the enemy hasn’t yet been found,  
• Panic, when the enemy has shot at the soldier but the soldier doesn’t know where 

the enemy is,  
• Favorable combat, when the soldier can see the enemy but the enemy doesn’t see 

the soldier, 
• Normal combat, when the soldier and its enemy are face to face, and  
• Retreated, when the soldier has seen the enemy, doesn’t see it now, and the 

enemy isn’t shooting at the soldier. 
 

 In these cases, when the number and shape of contexts are held constant, 
evolution can proceed in two ways.  First, a population of individuals can evolve and 
compete with each other, and mutation and crossover can operate on a number of genes 
simultaneously.  Alternatively, a single individual can be chosen, and all of its genes but 
one held constant, and a population of behaviors can evolve to replace the behavior in the 
single gene.  This can be repeated for each of the genes belonging to an individual.  In 
any case, the GP lets the behaviors change, but contexts stay the same from generation to 
generation.  We employed both of these techniques—using the first to generate a few 



 27

high quality individuals, and then the second on each of those individuals to refine the 
behaviors—and then back to the first, placing all the refined high quality individuals in a 
large population and evolving them all together again.  And so on. 
 
 

Results 
 One of the challenges we faced while developing this portfolio of technologies 
was how we could compare the behaviors generated by different approaches.  Some of 
the approaches used fitness functions that were incompatible with others, so it made little 
sense to compare calculated fitness directly.  Instead, we experimented with fitness 
functions and found the ones that produced the best individuals, which we then evaluated 
in a separate program that thoroughly tested every individual in the same way.  
 
 The test program tested each behavior a large number of times—generally around 
400,000 tests were performed for each behavior.  It could evaluate a single behavior in 
less than five minutes.  For each behavior, the test program would report a number of 
percentages: the probability of the soldier winning a combat without being shot at all, the 
probability of the soldier merely winning the combat, the probability of the soldier 
finding its enemy, and the probability of the soldier actually being killed in combat. 
 
 We used this test program to ultimately evaluate all the behaviors our GP’s, and 
our contextual GP’s, produced.  From it, we can say with certainty that the best of the 
stack-based behaviors was superior to the best of the behaviors without stacks, as the best 
stack-based behavior rated: 
 

Normal GP, Stack-Based Functions Implemented: 
Perfect test: 30% 

Successful test: 74% 
Finding the enemy: 99% 

Getting killed: 19% 
 
 
This was better than the 65% success rating the stackless behaviors obtained.  
 

Contextual genetic programming fared well, relative to the best non-contextual 
GP we tested.  When contexts were predetermined, and based on a spatial decomposition, 
the best individual we found to evolve had statistics of: 

 
Contextual GP, with Manually Designed Spatial Contexts: 

Perfect test: 32% 
Successful test: 78% 

Finding the enemy: 100% 
Getting killed: 30% 
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Unfortunately, stage-based decomposition, with predetermined contexts, reached 
only a best performance of: 

 
Contextual GP, with Manually Designed Stage-Based Contexts: 

Perfect test: 31% 
Successful test: 70% 

Finding the enemy: 95% 
Getting killed: 32% 

 
 
 We tried two different kinds of parameter space with the automated context 
evolution. One kind used only the X and Y coordinate of the soldier agent, and therefore 
produced a spatial decomposition. Its best performance consisted of: 
 

Contextual GP, Spatial Contexts Automatically Evolved: 
Perfect test: 32% 

Successful test: 74% 
Finding the enemy: 99% 

Getting killed: 32% 
  
 
 The other parameter space we tested consisted of practically all the sensory data 
available to the soldier.  It managed a best performance of: 
 

Contextual GP, Generic Contexts Automatically Evolved: 
Perfect test: 33% 

Successful test: 73% 
Finding the enemy: 100% 

Getting killed: 34% 
 
 
 Every one of these behaviors was found after running the GP, or contextual GP, 
over 24 hours on over 16 processors, at approximately one generation per processor per 
minute.  
 

In the end, the manually designed spatial decomposition of parameter space led to 
the best individual we produced.  However, this cannot make us discard the other 
approaches, because further refinements in any of them could easily elevate its 
capabilities beyond the watermark set by manually designed spatial contexts.  All our 
developed techniques scored within a small band of ability—70% to 79%—a slight, yet 
unmistakable, improvement over the basic method. 
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Accomplishments and Future Research 
 In our research, we have demonstrated that the soldier problem is resilient to 
traditional techniques of genetic programming, and we have shown that progress is 
possible by changing the way our GP approaches the problem.  Since the most impressive 
gain in performance was associated with manually decomposing the problem space, this 
would be the most natural place to extend the work described in this paper.  There are 
several important, unanswered questions about spatial decompositions in these kinds of 
problems that could be the focus of future research.  Some are: How different are the 
behaviors that specialize for different areas? What decomposition (in terms of 
configuration, number of contexts, and so forth) is the most appropriate for a given 
environment? Can spatial decomposition be automated in an evolutionary way, or are 
there principles on which a spatial decomposition of an environment can be formulated? 
Is this a psychologically plausible method of context evaluation, and is that, in any case, 
relevant? 
 
 The behaviors evolved in our tests so far wouldn’t be very useful in training 
simulations.  Their behavior is unsophisticated, and the game they’re trained at is far less 
complex than what would be required to engage human participants.  In order to create a 
GP to evolve behaviors for such an application, the problems we have faced would need 
to be better understood.  The three most significant problems we encountered are: how to 
measure performance while dealing with multiple, complex, interacting goals, how to 
decompose a complex problem into smaller and more easily solvable sub-problems, and 
how to select the most useful set of functions from which behavior trees are built.  
 
 Usually, performance measurements are easy to develop, because it is easy to 
describe desirable behavior.  While the goal of the soldier problem is straightforward, our 
research suggested that a straightforward fitness function was inadequate for our purpose, 
and that a function that rewards behaviors gradually while they slowly improve was 
necessary.  Our final formula succeeded in encouraging individuals to develop in the 
direction we wanted them to go, but also might have discouraged creative solutions to the 
problem with its micromanaging qualities.  We do not know whether simpler or more 
complex fitness functions lead to the development of better behaviors, only that the 
simple functions we tried were insufficient and the complex functions were capable.  
 
 The soldier problem is also burdened by its indeterminate gameplay, because of 
which some behaviors may, through no fault of their own, fail or succeed.  It may be 
possible to develop a fitness function that adjusts a behavior’s score in a particular test 
based on the difficulty of its encounter.  Also, applying a single fitness function to a 
collection of genes evolved by a contextual GP may be entirely inappropriate.  It could be 
better to have a separate fitness function for each context—somehow making evaluations 
contextually dependent as well as behaviors—to improve the development of specialized 
behaviors.  
 
 We found automated problem decomposition to be particularly difficult, and our 
contextual GP did not respond as well as we had hoped to our efforts to implement it.  
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Progress in this area will be difficult and very valuable.  First, it will be necessary to 
determine exactly when problem decomposition is useful, something that hasn’t been 
made completely clear yet.  In the soldier problem, there are certainly several 
fundamentally different problems that need solving—navigation and combat are the two 
most significantly distinguishable processes involved, and it makes sense that a GP could 
be better when the problem is broken up into at least those pieces, but it isn’t clear, for 
instance, whether retreating rapidly from battle and withdrawing carefully from battle 
ought to be evolved separately.  Furthermore, the issue of how contexts are defined is far 
from resolved, especially considering the success of the spatial decomposition over the 
stage-based decomposition.  
 
 Several tools could be useful in pursuit of solutions to those problems.  Foremost 
is the use of statistical methods such as factor analysis to determine the most significant 
distinguishing parameters, based on which a decomposition could be automatically 
proposed and evaluated.  In human agent simulations such as the soldier problem, 
cognitive psychology could also assist, by describing what sensory changes are necessary 
for a person to shift from one frame to another, and in what cases such shifts are most 
useful.  
 
 Finally, designing a function set is one of the most fundamental steps in 
developing a GP, and makes a tremendous difference to the success of the GP.  
Employing functions that give individuals the ability to plan strategies and perform 
sophisticated analyses of their environment and memory is critical.  Unfortunately, 
developing a rich function set, capable of dealing with a large amount of input and 
available decisions, is difficult, and giving the GP more functions is not always the 
answer.  A larger function set also entails a larger and, perhaps, more difficult to navigate 
solution space.  
 

Macro functions, functions that provide complex behavior in a single node, might 
be useful in this regard.  Instead of having functions like “move forward” and “turn left”, 
it might be better to have higher level functions such as “retreat from battle to a known 
safe place” and “run to the nearest wall”.  Expert knowledge could be used to form such a 
function set; in the case of the soldier problem, we may gain from talking with military 
strategists and trainers, and experienced soldiers, about how they analyze situations and 
make decisions.  We might be able to combine the expertise of several individuals in the 
function set of a single GP, and evolve from it behaviors that represent not just the sum of 
each expert’s knowledge, but the value of the interactions between the knowledge of 
several experts.  
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