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Developing Flexible Multi-Paradigm Modeling and 
Simulation Environments for Complex Planning
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EMPaSE (Extensible Multi-Paradigm Simulation Environment) has been applied to network 
simulations both within Sandia and by external customers. We have leveraged the extensible 
nature of both the simulation engine and the integrated development environment (IDE) to 

rapidly prototype an integrated planning tool for external customers.

    This work aims to develop a flexible common modeling 
and simulation environment for creating and executing models 
within sequential modular (SM), system dynamics (SD), agent-
based (AB), or discrete event simulation (DES) modeling 
paradigms, as well as hybrid models that combine components 
that embody more than one of these paradigms.  These 
paradigms frequently arise when modeling a diverse range 
of domains, including planning and scheduling, engineered 
systems, and socio-technical policy models.  However, 
while more than one of these paradigms may be applicable 
to a particular problem, modeling tools generally restrict the 
practitioner to a single modeling paradigm.  This restriction can 
hamper model development, as the paradigm chosen for early 
phases of development may be inappropriate for — or even 
prevent – subsequent model enhancements.  A better approach 
would be to create a single hybrid model that contains 
components that leverage different modeling paradigms.  

    To address this need, we are developing an Extensible 
Multi-PAradigm Simulation Environment (EMPaSE)    
(Figure 1).  This environment supports not only single-
paradigm modeling, but also intrusive hybridization 
of SM, SD, AB, and DES paradigms.  Our work has 
centered on developing two separate, but complementary, 
tools:  a graphical multi-paradigm integrated development 
environment (MPIDE) and a high-efficiency multi-paradigm 
simulation engine (MPSE). This work arose from an effort to 
develop a general-purpose modeling environment for agent-
based simulations.  When designing agent-based systems, we 
encountered a fundamental duality within individual agents: 
while most agent-based simulation environments rely on 
a messaging- or event-based framework, the internal logic 
dictating an agent’s behavioral response was more likely to 
be defined causally or procedurally.  In order to allow users to 
interactively create and define new behaviors, the modeling 
and simulation environment would need to be able to support 
both paradigms.  While environments exist that allow for 
high-level hybridization [1], there are no environments that 
support the intrusive hybridization of simulation components 
we found necessary.

        
                                                

The fundamental difference between an event-based and 
a procedural (or equation-based) simulation that prevents 
ready hybridization lies in the movement of data within the 
simulations; and specifically, whether the data moves using 
a “pull” or “push” model.  General procedural computation 
invariably follows a “pull” data transfer model.  Each step 
in the procedure (either equation or control structure) relies 
solely on data computed in a previous step.  When evaluating 
a step, the simulator will read (pull) the required data in 
from the referenced variables, perform the computation 
specified by the step, and store the result back to a variable 
so that it is available to subsequent steps.  The key property 
of pull-based data transfers is that it is the consumer of the 
data that initiates the data transfer.  In contrast, event-driven 
simulation paradigms — including discrete event and the core 
agent-based simulation environment — rely on data transfers 
(communication patterns) that are initiated by the data 
producer.  For example, one agent will prepare a message and 
send (push) it to the intended recipient agent, often triggering 
an immediate response from the recipient.  Similarly, in a 

Figure 1.  The EMPaSE graphical multi-paradigm integrated development environment 
(MPIDE) showing the interface for constructing a simple agent-based model. 
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discrete event paradigm, the main event queue will iteratively 
push the next event in the queue to the designated target, 
triggering the corresponding event processing function. 

    Push-based communication paradigms may be emulated 
using pull-based patterns by having the recipients 
continuously poll their data sources.  However, this approach 
places a significant burden on the individual recipients 
and can complicate the verification process for both the 
environment and the model. Instead, EMPaSE implements 
two parallel low-level communication systems: a pull-based 
system (ports) for general computation, and a push-based 
system (plugs) for messages and events.  By providing 
explicit systems for both pull and push patterns, EMPaSE 
can natively support both general procedural-based (SM, SD) 
and event-based (AB, DES) simulation paradigms, as well as 
intrusive hybridization of these hybrids.

    While the distinguishing capability of EMPaSE is the 
dual-data flow model, it has several other key design 
features.  EMPaSE models are built using a hierarchical 
modular structure.  Modules form the fundamental building 
blocks of an EMPaSE model and can define anything from 
a basic mathematical operation to a complex behavioral 
response model.  Modules rely on a “plug-in” system, which 
allows developers to build independent module libraries 
that are gathered, linked, and instantiated by EMPaSE at 
run time.  Inter-module communication occurs through two 
complementary systems: pull-based “ports” for general 
computation patterns and push-based “plugs” for event 
and message processing.  EMPaSE models organize their 
computational modules in a hierarchical structure.  This 
allows modelers to visually scope portions of a model and 
define independent execution drivers (Figure 1).  This enables 
separating conditional components, loops, and event or 
message handlers from the main execution driver.  Additionally, 
hierarchical scoping facilitates encapsulation of component 
state logic necessary for constructing agent-based models.
    The collection of modules, their organization, and 
their connectivity through “ports” and “plugs” define the 
computational structure for an EMPaSE model.  In addition, 
EMPaSE natively supports simulation environments based 
on an abstract graph of nodes and links.  Dedicated modules 
(Agents and Data Provider modules) act as bridges between 
the computational structure (module hierarchy) and the 
simulation environment (network).  These modules reside 
at nodes and relate to their neighbors through directed typed 
links.  To facilitate the construction and visualization of 
complex, interacting networks with dramatically different 
structure, EMPaSE provides a system for organizing the 
nodes into hierarchical trees that describe 2-D “slices” of the 
overall network (Figure 2). 

    

Current research activities are focusing on developing 
improved capabilities for supporting extensibility 
within both the core simulation engine and the graphical 
integrated development environment.  Additionally, we 
are investigating the application of new massively multi-
threaded supercomputing architectures as a potential avenue 
for supporting efficient parallelization of the MPSE for large 
hybrid discrete-continuous models.

EMPaSE has been applied to network simulations both 
within Sandia and by external customers.  We have leveraged 
the extensible nature of both the simulation engine and 
the integrated development environment (IDE) to rapidly 
prototype an integrated planning tool for external customers. 
Another internal project has selected EMPaSE as a candidate 
integration environment for coupling a system dynamics 
regional resource model with detailed cognitive stakeholder 
models.
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Figure 2.  Visualizing a 2-D slice of a model network environment within the MPIDE.




