
IV - Driving Applications

IV-22

Developing Flexible Multi-Paradigm Modeling and
Simulation Environments for Complex Planning

Contact: John D. Siirola, Exploratory Simulation Technologies, jdsiiro@sandia.gov

EMPaSE (Extensible Multi-Paradigm Simulation Environment) has been applied to network
simulations both within Sandia and by external customers. We have leveraged the extensible
nature of both the simulation engine and the integrated development environment (IDE) to

rapidly prototype an integrated planning tool for external customers.

 This work aims to develop a flexible common modeling
and simulation environment for creating and executing models
within sequential modular (SM), system dynamics (SD), agent-
based (AB), or discrete event simulation (DES) modeling
paradigms, as well as hybrid models that combine components
that embody more than one of these paradigms. These
paradigms frequently arise when modeling a diverse range
of domains, including planning and scheduling, engineered
systems, and socio-technical policy models. However,
while more than one of these paradigms may be applicable
to a particular problem, modeling tools generally restrict the
practitioner to a single modeling paradigm. This restriction can
hamper model development, as the paradigm chosen for early
phases of development may be inappropriate for — or even
prevent – subsequent model enhancements. A better approach
would be to create a single hybrid model that contains
components that leverage different modeling paradigms.

 To address this need, we are developing an Extensible
Multi-PAradigm Simulation Environment (EMPaSE)
(Figure 1). This environment supports not only single-
paradigm modeling, but also intrusive hybridization
of SM, SD, AB, and DES paradigms. Our work has
centered on developing two separate, but complementary,
tools: a graphical multi-paradigm integrated development
environment (MPIDE) and a high-efficiency multi-paradigm
simulation engine (MPSE). This work arose from an effort to
develop a general-purpose modeling environment for agent-
based simulations. When designing agent-based systems, we
encountered a fundamental duality within individual agents:
while most agent-based simulation environments rely on
a messaging- or event-based framework, the internal logic
dictating an agent’s behavioral response was more likely to
be defined causally or procedurally. In order to allow users to
interactively create and define new behaviors, the modeling
and simulation environment would need to be able to support
both paradigms. While environments exist that allow for
high-level hybridization [1], there are no environments that
support the intrusive hybridization of simulation components
we found necessary.

The fundamental difference between an event-based and
a procedural (or equation-based) simulation that prevents
ready hybridization lies in the movement of data within the
simulations; and specifically, whether the data moves using
a “pull” or “push” model. General procedural computation
invariably follows a “pull” data transfer model. Each step
in the procedure (either equation or control structure) relies
solely on data computed in a previous step. When evaluating
a step, the simulator will read (pull) the required data in
from the referenced variables, perform the computation
specified by the step, and store the result back to a variable
so that it is available to subsequent steps. The key property
of pull-based data transfers is that it is the consumer of the
data that initiates the data transfer. In contrast, event-driven
simulation paradigms — including discrete event and the core
agent-based simulation environment — rely on data transfers
(communication patterns) that are initiated by the data
producer. For example, one agent will prepare a message and
send (push) it to the intended recipient agent, often triggering
an immediate response from the recipient. Similarly, in a

Figure 1. The EMPaSE graphical multi-paradigm integrated development environment
(MPIDE) showing the interface for constructing a simple agent-based model.

IV - Driving Applications

IV-23

discrete event paradigm, the main event queue will iteratively
push the next event in the queue to the designated target,
triggering the corresponding event processing function.

 Push-based communication paradigms may be emulated
using pull-based patterns by having the recipients
continuously poll their data sources. However, this approach
places a significant burden on the individual recipients
and can complicate the verification process for both the
environment and the model. Instead, EMPaSE implements
two parallel low-level communication systems: a pull-based
system (ports) for general computation, and a push-based
system (plugs) for messages and events. By providing
explicit systems for both pull and push patterns, EMPaSE
can natively support both general procedural-based (SM, SD)
and event-based (AB, DES) simulation paradigms, as well as
intrusive hybridization of these hybrids.

 While the distinguishing capability of EMPaSE is the
dual-data flow model, it has several other key design
features. EMPaSE models are built using a hierarchical
modular structure. Modules form the fundamental building
blocks of an EMPaSE model and can define anything from
a basic mathematical operation to a complex behavioral
response model. Modules rely on a “plug-in” system, which
allows developers to build independent module libraries
that are gathered, linked, and instantiated by EMPaSE at
run time. Inter-module communication occurs through two
complementary systems: pull-based “ports” for general
computation patterns and push-based “plugs” for event
and message processing. EMPaSE models organize their
computational modules in a hierarchical structure. This
allows modelers to visually scope portions of a model and
define independent execution drivers (Figure 1). This enables
separating conditional components, loops, and event or
message handlers from the main execution driver. Additionally,
hierarchical scoping facilitates encapsulation of component
state logic necessary for constructing agent-based models.
 The collection of modules, their organization, and
their connectivity through “ports” and “plugs” define the
computational structure for an EMPaSE model. In addition,
EMPaSE natively supports simulation environments based
on an abstract graph of nodes and links. Dedicated modules
(Agents and Data Provider modules) act as bridges between
the computational structure (module hierarchy) and the
simulation environment (network). These modules reside
at nodes and relate to their neighbors through directed typed
links. To facilitate the construction and visualization of
complex, interacting networks with dramatically different
structure, EMPaSE provides a system for organizing the
nodes into hierarchical trees that describe 2-D “slices” of the
overall network (Figure 2).

Current research activities are focusing on developing
improved capabilities for supporting extensibility
within both the core simulation engine and the graphical
integrated development environment. Additionally, we
are investigating the application of new massively multi-
threaded supercomputing architectures as a potential avenue
for supporting efficient parallelization of the MPSE for large
hybrid discrete-continuous models.

EMPaSE has been applied to network simulations both
within Sandia and by external customers. We have leveraged
the extensible nature of both the simulation engine and
the integrated development environment (IDE) to rapidly
prototype an integrated planning tool for external customers.
Another internal project has selected EMPaSE as a candidate
integration environment for coupling a system dynamics
regional resource model with detailed cognitive stakeholder
models.

References
1. Borshchev, A., and Filippov, A. (2004). From System Dynamics
and Discrete Event to Practical Agent Based Modeling: Reasons,
Techniques, Tools, Proceedings of the 22th International
Conference of the System Dynamics Society. Keble College, Oxford.
July 25 – 29.

This work has been supported by SNL’s Laboratory Directed
Research and Development (LDRD) Program.

Figure 2. Visualizing a 2-D slice of a model network environment within the MPIDE.

