
Position Paper on Scalability of Evolutionary Computation

Arthurine Breckenridge, Mark Boslough, and Michael Peters

Sandia National Laboratories, New Mexico
PO Box 5800 MS 1004, Albuquerque, NM 87185

{arbreck, mbboslo, mpeters}@sandia.gov

Abstract. We have been researching methods developed for designing
behaviors and a directed cyclic graph for an optimized behavior selection
mechanism for autonomous mobile robots to use in unoccupied aerial vehicles
(UAVs) performing swarm based automatic target recognition. Our work is
based on managing level of behavior, where behavior algorithms that are
initially developed using evolutionary computing methods in a relatively low-
fidelity, disembodied modeling environment can be migrated to high-level,
dynamic, complex embodied applications. We will demonstrate our concept
using adaptive waypoints, which allow navigation behaviors to be ported
among autonomous mobile robots with incremental adaptation, different
degrees of embodiment, and staged optimization. We believe our evolutionary
algorithms scale to provide useful mission goal tasks.

1. Introduction

Advances in aeronautical and electronic engineering have enabled the production
of low cost unoccupied aerial vehicles (UAVs). A person controls one, or perhaps a
few, UAVs. Sandia National Laboratories New Mexico (SNL) wants to deploy
emergent swarms of simple yet “smart” UAV as mobile agents that perform
automatic target recognition (ATR) over a wide area to achieve a strategic goal (e.g.,
border protection). As entity groups, or swarms, attain large size (hundreds to
thousands), the number of potential character interactions scales exponentially and
provides both a greater opportunity to coordinate and a costlier penalty for
interference. Having centralized command and control then becomes impractical.

The problem of autonomy for UAVs is not trivial because the noise and
uncertainty makes it necessary that the individual UAV be aware of its own local goal
performance (i.e., ATR), and change its behavior globally to improve the overall
joint-mission measures of effectiveness. Restrictions in available resources in the
UAV mean that power, security, communications, UAV characteristics, sensor data,
network integration, etc. will be constrained, and effective measures of performance
need to be quantified. Also, due to the diversity of physical environments and vehicle
(or other entity) locomotion abilities, it is currently difficult to develop navigation
control algorithms that generalize across entity types and/or physical settings.

2 Arthurine Breckenridge, Mark Boslough, and Michael Peters

In general, more algorithmic work is available than can be loaded into the current
control capabilities of an UAV. The limiting factor is balancing the computational
and other resources, whether in a virtual simulation or as a physical swarming entity.
We use genetic programming to provide a careful balance of algorithmic behavior
code and an optimized behavior selection mechanism to achieve the UAV mission
goal that is needed. Our concepts resonate with accepted properties of good
engineering design: functional modularity, structural regularity, and hierarchy to
achieve the highest level of behaviors supported by the resources.

2. Current Situations

 The staff of the Intelligent Systems and Robotics and Evolutionary Programming
departments at SNL researches, designs, and builds complex robotic systems. We
have spent three years in a major project called “Graduated Embodiment of
Sophisticated Agent Evolution and Optimization” for deploying quality autonomous
robots. SNL’s work is based on managing level of behavior, where behavior
algorithms that are initially developed using evolutionary computing methods in a
relatively low-fidelity, disembodied compute environment can be migrated into high-
level, complex, dynamic and embodied simulation environment. This work is an
extension of decades of work at SNL in robotics, simulation and animation. SNL
research has developed a paradigm for hybrid engineering (e.g., combining planning
or deliberate with behavior-based or reactive behaviors) that replaces current control
systems and centralization with emergence and distributed-ness for autonomous
mobile robots. SNL’s test scenario was specific to goal-seeking navigation. The
framework with appropriate mission goal algorithms can be used for applications in
numerous areas for civil and military markets.

The initial research was to address scaling issues and bottlenecks seen in
traditional individual robotic behavior selection mechanisms that when implementing
robotic swarms did not scale. SNL researchers chose to use genetic programming
(GP) methods to develop robust autonomous robotic behaviors because this method
has been demonstrated to work for “proof of principle” problems. In his book,
Genetic Programming III, Koza [3] documents sixteen attributes that are needed for
challenging a computer to solve a problem without explicitly programming it. No
other methods come as close as GP, which currently unconditionally possesses
thirteen of the sixteen attributes. SNL’s researchers felt the last three attributes: wide
applicability, scalability, and competitive with human-produced results were possibly
the most important for our application. We felt scaling was the crux of success of
evolutionary methods, and cannot be taken for granted, as the history of AI has taught
us more than once. [1]

Position Paper on Scalability of Evolutionary Computation 3

3. Position Advocated

We apply “biomimetic behavior” engineering to UAVs for the tasks of trying to
figure out where you are, where you are going, and how to get there. Navigation,
positioning, and path planning are crucial to virtually every activity undertaken by
animals and humans, yet the process often seems impossible to describe, model, or
prescribe. In the simplest examples, the goals and rules of motion allow for simple
behavior algorithms that can be turned into human-generated computer programs that
can control human-created systems. But such programs are brittle and prone to failure
if the system does not behave exactly as anticipated. The real world is full of
contingencies, unexpected events, multiple (and often competing) goals, nonlinear
responses, feedbacks, noise, and complex interactions across a wide range of time
scales and levels of organization. Despite the changing environment, animals have
evolved the ability to cope, prosper, and multiply in such a world. Their robust
behaviors give them the ability to navigate and “plan” their path of motion in order to
migrate, search for food, return home, find mates, and avoid predators. They are
successful at these goals while simultaneously tending to lower-level tasks, adapting
to changes in their environment, dealing with unfamiliar situations, and ignoring
irrelevant information.

SNL’s biomimetic behavior methodology uses incremental adaptation, graduated
embodiment, and staged optimization to address differing levels of behavior. SNL
introduces a hybrid artificial intelligence (AI) approach that has many advantages in
operating in a complex, dynamic environment. Incremental adaptation creates a
structural separation of behavior allowing evolution to reuse modules as high-level
building blocks. Graduated embodiment allows interaction with the environment or
other individuals, maintaining short individual descriptions but leading to complex
collective behaviors. Staged optimization is the iterative evolution of functional
units. Our first experimental results of layering these three techniques has resulted in
both an individual entity and a group of robots with a robust interface between
navigation control algorithms and the specific mission task on which they operate.
Such navigation strategies, as move-to-goal, are scalable since they are adjusted to
suit the degrees of freedom (DoF) capabilities of each vehicle and its environment.
The level of behavior paradigm allows scaling to exactly match hardware in the UAV
with the maximum functionality possible.

Incremental Adaptation
Modular-functional decomposition is a fundamental tenet of the field of computer

science. We build modular-functional decomposition “building blocks” that are either
computer generated GP or a hand-coded (i.e., 2D or 3D motion planner, autopilot).
Each building block has deliberative behaviors when dealing with its environment via
input and output connectors. Each building block is incrementally adaptive for level
of fidelity. Incremental adaptation is not a simple combination of building blocks; it
is an enhancement an existing building block. Individual components are black

4 Arthurine Breckenridge, Mark Boslough, and Michael Peters

boxes encapsulating control knowledge that are algorithms provided from
biomechanics, robotic, animation or any field of literature. The components are as
simple as complex as needed. For example, a module could initially be quite minimal
but enhanced as coding permits. Or, the opposite, functionality is restricted for real-
time performance. Or, in the GP module, successive generations can pre-select more
sophisticated challenges as well as more refined solutions. In our adaptive waypoint
example, the module consists of two-layer hierarchy of a real-time 2D motion planner
that provides a fast waypoint for ANY UAV and a trajectory smoother for a
SPECIFIC UAV. The results are put into the UAV’s flight dynamics model.

Graduated Embodiment
Modular-functional decomposition is certainly a legitimate architectural principle;

it is hardly the only one possible. Reactive robotics has tended towards layered
architecture with modifying functionality rather than to the “black-box” organization.
We build interacting “building blocks” that can be either computer generated GP or a
hand-coded (i.e., collision detection, threat avoidance). An interacting “building
block” is one in which information is continually being sensed and behavior is
continually being generated. Crucial to the distinction between modular-functional
decomposition “building block” and an interaction “building block” is the idea that
interactive systems are always operating concurrently/embodied with their
environment. Traditional computer procedures work from input at the beginning to
output at the end; they are blissfully ignorant of their environment while executing.
In contrast, an interactive (sub-) system is always responding to its environment. Each
building block has reactive behaviors. Each building block is graduated through
increasing levels of fidelity. With complete switching between two distinct “building
blocks”, graduated embodiment simply adjusts the number of adaptable states and the
scope of their perturbation with the environment in a time-varying constraint. We
apply a specific definition of embodiment and degree of embodiment [4] to quantity
our interactions. For example, many degrees of freedom bear little relationship to the
entity’s ability to navigate and we can use the same coarse collision detection
independent of the UAV specifications. If and only if a coarse collision is detected, a
finer grain algorithm will be deployed. DoFs can also be eliminated when UAVs
move in unison with others or swarms. Other DoFs may need to be added to
accommodate a robotic swarm.

Staged Optimization
Our research concentrates on how the resulting solutions, either reactive or

deliberate, may be integrated to yield composite controllers with significant broader
functionality. We build a “behavior graph” or a vertical and horizontal hierarchical
composable control structure to manage the interaction between the modular-
functional decomposition and the interacting building blocks. Our graph has
provision for static parameters (defined as input/output functions), dynamic
parameters (defined as a time-varying “instantaneous” value which maps observation
or sensations (input) to reactions (output)), and/or pointers to code containing

Position Paper on Scalability of Evolutionary Computation 5

algorithms for modular-functional decomposition and/or interacting building blocks.
Security is built into the system where each behavior graph value can have read or
write privileges to owner, group and world within the UAV and via network access.
The behavior graph is not a simple directed acyclic graph such as a scene graph in
graphics. It allows for feedback loops. Traversing the graph is based on
preconditions, post-conditions, and expected performance that have been optimized
to resolve ambiguous transitions between behaviors. The graph also has provisions
for level of fidelity. Each level of behavior of the building blocks can be switched on
or off or varying levels of fidelity in the traditional style or cross-pollinated in the
genetic programming style. Rather than combining all building blocks, staged
optimization allows high-level behaviors to be evolved before progressing to details.
We feel that staged optimization is the key to scaling of the GPs.

The GP code generates an output file called the Level of Behavior (LOB) graph.
The data structure of the graph contains the algorithm with the appropriate multiple
arrays to keep track of state variables (for high level situational awareness and
decisions), calculated integers (for policy table flags), registers (genetically calculated
variables) and pointers (for multiple decision trees that depend on policy flags). Our
LOB graph differs from Finite State Machines in the diversity of the terminal nodes.
By generalizing the GP, behaviors for any environmental rules can be developed with
the same code, from the most basics (1 DoF, discrete space) to advance (6 or more
DoF, continuous space, full aerodynamics, turbulent boundary layer). The LOB
graph, C++ object for the individual UAV, and C++ algorithm code for either the
incremental adaptation or graduated embodiment is shared by the GP and modeling
and simulation code.

Swarming Behavior Scenario Conceptual Model
The ability for a UAV group to swarm is actually a composite of numerous

behaviors from basic navigation to performing an actual goal mission. In our
simplified example for illustration, we show six layers of composite behaviors. The
behaviors (Figure 1) are not meant to be taxonomy for autonomous vehicles but a
starting example of what is needed to perform a simple scenario mission in real-time
and the diversity of fidelity available in the algorithmic community. Sub-behaviors
may also be identified as the modeling and simulation progresses. Conditions have
been reduced to simple yes or no for illustrative purposes. In reality, the LOB graph
would be hard to illustrate for even this adaptive waypoint scenario.

Layer 1: Launch the UAV-- The behaviors can range from fly, un-tethered or
minimally human-assisted illustrating the flight phases of a model flight trajectory
(e.g., takeoff roll, takeoff, initial climb, on-path climb, cruise climb, initial descent,
approach descent, final descent, and landing) to air dropped from another vehicle
or sling-shot from a launching mechanism.

Fig. 1. Adaptive Waypoint Scenario

6 Arthurine Breckenridge, Mark Boslough, and Michael Peters

Layer 2: Validation of Hardware and Software-- The behaviors can range from
preloaded task information that has been verified prior to launch to dynamically
loaded task information where task is verified and validated in motion such as
checking sensor (i.e., camera) and GPS locations (i.e., first waypoint).

Layer 3: Factors Influencing the Path Utility-- Some constraints to consider are:
1. Collision detection – The behaviors can range from avoiding collisions during

all real-time behaviors with high-fidelity exact shape detection based on vision
sensors to pre-determined static rough shape avoidance with no dynamic
assistance or look ahead capability of a terrain following radar.

2. Region Mapping – The behaviors can range from pre-determined known
obstacle mapping to dynamic discovery.

3. Goal Mission – In this example, the behavior is ATR ranging from multiple,
dynamic targets with adjustments for more exploration to single static targets,
report, and return-to-base. Data collection or communication techniques to
determine targets add further complexities to the behavior.

4. Threat Avoidance – The behaviors range from radar threat to line of sight.
5. Collective Navigation -- The behaviors range from thousands of UAVs using

particle-in-cell (PIC) codes performing synchronized arrival over diverse
environments to two UAVs
performing bi-directional
communications like a smaller
vehicle is deployed from a
mother ship. (Note: PIC is a
special instance of particle
simulation code where forces
are interpolated onto particles
from a mesh to improve
efficiency. Forces can be
environmental, behavioral, or
directed.)

6. Other additional constraints can
be added when coded. The
above items are examples only
to illustrate the behaviors get
diverse quickly.

Layer 4: Adaptation of Waypoint-- The behaviors range from recalculation of next
waypoint to read next waypoint from queue.
Layer 5. Factors Influencing the UAV’s Motion-- Some constraints to consider
are:

Position Paper on Scalability of Evolutionary Computation 7

1. Vehicle movement – The behaviors range from full flight dynamics models
including stopping, backwards, hovering to minimal one step forward motion.

2. Vehicle curvature – The behaviors range from full weighted b-spline
algorithms for smoothness of trajectory based on parameters such as
maximum turn rate, maximum climb rate, degrees of freedom, aggregate
altitude along mission path to no curvature allowed.

3. Vehicle sensors requirements – The behaviors range from multiple sensors
with multiple perturbations with environment to no sensor.

4. Vehicle modes of effectiveness -- The behaviors range from high dependence
on swarm of UAVs to single individual reliability parameters based on travel,
fuel limitations, etc.

5. Vehicle communication requirements – The behaviors range from large
transfers of video data in harsh environment conditions to minimal “I’m alive”
transmissions.

6. Other additional constraints can be added when coded. The above items are
examples only to illustrate the behaviors get diverse quickly.

Layer 6. Motion of Vehicle-- The final behavior in the hierarchy is the UAV
moves in REAL-TIME.

In our architecture, the LOB graph can be used as a building block. If all
parameters are static with strict input/output from a module, it is equivalent to a
modular-functional decomposition building block. If the variables are dynamic with
time varying instantaneous values, the LOB graph functions as an interacting building
block. If multiple building blocks are present, the LOB graph acts as a mechanism
for composing behaviors. The LOB files can be concatenated for a human-imposed
structure to the graph or computer-generated to a fitness function. In our example,
Layer 3 and Layer 5 are NOT simple sequential behaviors. An optimized balance is
needed and quickly becomes a factorial problem if done manually. Staged
optimization is needed for scaling. For projects involving robot teams, a LOB graph
can be optimized for different fitness functions and tasked into different UAVs.

We develop a method of analysis that shows the quality of service metrics of each
individual UAV and a swarm. This effort applies to swarm metrics but in general is
repeat of the work done at Sandia in 1988 known as the Gustafson-Barsis [2] Law:
the size of most problems is scaled up sufficiently, then any required efficiency (A
measure of hardware utilization, equal to the ratio of speedup achieved on P
processors to P itself.) can be achieved on any number of processors. Or in other
words, the size of the goal mission is scaled up sufficiently, and then any required
efficiency can be achieved by any number of UAVs operating in a swarm. The
relative speedup or accuracy is where the single UAV execution time is divided by
the swarm execution time.

8 Arthurine Breckenridge, Mark Boslough, and Michael Peters

4. Conclusions

In a deliberative, logic-based paradigm, mobile robot control is divided into sense,
plan, and act phases, with each phase handled respectively. A plan equates to
compute in a virtual world. The cycle of sense, plan, and act is repeated at regular and
very small time intervals throughout the agent’s operational period. This paradigm
works best for well-defined, represented problems. Unfortunately, many of the
environments where embodied agents might be used (certainly in most real world
environments) demand that the agents make decisions with alacrity due to the high
rate of environmental change. As environments become more and more dynamic and
complex, the problems become more severe, eventually causing the agents based on a
sense/plan/act cycle to become impractical. We need to show a diverse, distributed,
decentralized, and dynamic method for developing UAV control. After developing
the individual UAV control genetically, we need to show a useful and self-organizing
method for the UAV to become part of a swarm. We use a combination of
deliberative and reactive algorithms. We developed a methodology for selecting the
algorithms that scale between full fidelity, incremental adaptation and graduated
embodiment. All components can use genetic programs and the combination of
techniques show that GPs scale.

5. Acknowledgements

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy under contract DE-
AC04-94AL85000. The Laboratory Directed Research and Development (LDRD)
program funded this project.

6. References

1. Brooks, R. A. “A robust layered control system for a mobile robot” IEEE Journal of
Robotics and Automation, 2: 14-23 (1986).

2. Gustafson, J. “Re-evaluating Amdahl’s Law,” CACM, 31, 5, 532-533, (1988).
3. Koza, J., Bennet, F., Andre, D., and Keane, M. “Genetic Programming III: Darwinian

Invention and Problem Solving,” Morgan Kaufmann, (1999).
4. Newton, A.L., Nehaniv, C.L., and Dautenhahn, K., “The Robot in the Swarm: An

Investigation into Agent Embodiment within Virtual Robotic Swarms,” Lecture
Notes in Computer Science, Vol. 2801. Springer-Verlag, Heidelberg On-line (2004).

