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Abstract. We have  been  researching  methods  developed  for  designing
behaviors  and  a  directed  cyclic  graph  for  an  optimized behavior  selection
mechanism for autonomous mobile robots to use in unoccupied aerial vehicles
(UAVs) performing swarm based automatic target  recognition.  Our  work is
based  on  managing  level  of  behavior, where  behavior  algorithms  that  are
initially developed using evolutionary computing methods in a relatively low-
fidelity,  disembodied modeling environment  can be  migrated  to  high-level,
dynamic,  complex embodied applications.  We will  demonstrate our concept
using  adaptive  waypoints, which  allow  navigation  behaviors  to  be  ported
among  autonomous  mobile  robots  with  incremental  adaptation,  different
degrees of embodiment, and staged optimization. We believe our evolutionary
algorithms scale to provide useful mission goal tasks.

1. Introduction

Advances in aeronautical and electronic engineering have enabled the production
of low cost unoccupied aerial vehicles (UAVs). A person controls one, or perhaps a
few,  UAVs.  Sandia  National  Laboratories  New  Mexico  (SNL)  wants  to  deploy
emergent  swarms  of  simple  yet  “smart”  UAV  as  mobile  agents  that  perform
automatic target recognition (ATR) over a wide area to achieve a strategic goal (e.g.,
border  protection).  As  entity  groups,  or  swarms,  attain  large  size  (hundreds  to
thousands), the number of  potential character interactions scales exponentially and
provides  both  a  greater  opportunity  to  coordinate  and  a  costlier  penalty  for
interference. Having centralized command and control then becomes impractical. 

The  problem  of  autonomy  for  UAVs  is  not  trivial  because  the  noise  and
uncertainty makes it necessary that the individual UAV be aware of its own local goal
performance (i.e.,  ATR),  and change its behavior  globally to improve the overall
joint-mission  measures  of  effectiveness.  Restrictions  in  available  resources  in the
UAV mean that power, security, communications, UAV characteristics, sensor data,
network integration, etc. will be constrained, and effective measures of performance
need to be quantified. Also, due to the diversity of physical environments and vehicle
(or other entity) locomotion abilities, it is currently difficult to develop navigation
control algorithms that generalize across entity types and/or physical settings. 
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In general, more algorithmic work is available than can be loaded into the current
control capabilities of an UAV.  The limiting factor is balancing the computational
and other resources, whether in a virtual simulation or as a physical swarming entity.
We use genetic programming to provide a careful balance of algorithmic behavior
code and an optimized behavior selection mechanism to achieve the UAV mission
goal  that  is  needed.   Our  concepts  resonate  with  accepted  properties  of  good
engineering  design:  functional  modularity,  structural  regularity,  and  hierarchy  to
achieve the highest level of behaviors supported by the resources.  

2. Current Situations

 The staff of the Intelligent Systems and Robotics and Evolutionary Programming
departments at  SNL researches,  designs,  and builds complex robotic  systems. We
have  spent  three  years  in  a  major  project  called  “Graduated  Embodiment  of
Sophisticated Agent Evolution and Optimization” for deploying quality autonomous
robots.  SNL’s  work  is  based  on  managing  level  of  behavior, where  behavior
algorithms that are initially developed using evolutionary computing methods in a
relatively low-fidelity, disembodied compute environment can be migrated into high-
level,  complex,  dynamic  and  embodied  simulation  environment.  This work is  an
extension of decades of work at SNL in robotics, simulation and animation. SNL
research has developed a paradigm for hybrid engineering (e.g., combining planning
or deliberate with behavior-based or reactive behaviors) that replaces current control
systems  and  centralization  with  emergence  and  distributed-ness  for  autonomous
mobile  robots.  SNL’s  test  scenario  was  specific  to  goal-seeking  navigation.  The
framework with appropriate mission goal algorithms can be used for applications in
numerous areas for civil and military markets.

The  initial  research  was  to  address  scaling  issues  and  bottlenecks  seen  in
traditional individual robotic behavior selection mechanisms that when implementing
robotic swarms did not  scale. SNL researchers chose to use genetic programming
(GP) methods to develop robust autonomous robotic behaviors because this method
has  been  demonstrated  to  work  for  “proof  of  principle”  problems.  In  his  book,
Genetic Programming III, Koza [3] documents sixteen attributes that are needed for
challenging a computer to solve a problem without explicitly programming it.  No
other  methods  come  as  close  as  GP,  which  currently  unconditionally  possesses
thirteen of the sixteen attributes. SNL’s researchers felt the last three attributes: wide
applicability, scalability, and competitive with human-produced results were possibly
the most important for our application. We felt scaling was the crux of success of
evolutionary methods, and cannot be taken for granted, as the history of AI has taught
us more than once. [1] 
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3. Position Advocated

We apply “biomimetic behavior” engineering to UAVs for the tasks of trying to
figure out where you are, where you are going, and how to get there. Navigation,
positioning, and path planning are crucial to virtually every activity undertaken by
animals and humans, yet the process often seems impossible to describe, model, or
prescribe. In the simplest examples, the goals and rules of motion allow for simple
behavior algorithms that can be turned into human-generated computer programs that
can control human-created systems. But such programs are brittle and prone to failure
if  the  system  does  not  behave  exactly  as  anticipated.  The  real  world  is  full  of
contingencies, unexpected events, multiple (and often competing) goals, nonlinear
responses, feedbacks, noise, and complex interactions across a wide range of time
scales and levels of organization. Despite the changing environment, animals have
evolved the  ability  to  cope,  prosper,  and multiply  in such  a  world.  Their  robust
behaviors give them the ability to navigate and “plan” their path of motion in order to
migrate,  search for  food,  return home,  find mates,  and avoid predators. They are
successful at these goals while simultaneously tending to lower-level tasks, adapting
to changes  in their  environment,  dealing with unfamiliar  situations,  and ignoring
irrelevant information.

SNL’s biomimetic behavior methodology uses incremental adaptation, graduated
embodiment, and staged optimization to address differing levels of  behavior. SNL
introduces a hybrid artificial intelligence (AI) approach that has many advantages in
operating  in  a  complex,  dynamic  environment.  Incremental  adaptation  creates  a
structural separation of behavior allowing evolution to reuse modules as high-level
building blocks. Graduated embodiment allows interaction with the environment or
other individuals, maintaining short individual descriptions but leading to complex
collective  behaviors.   Staged optimization  is  the  iterative  evolution  of  functional
units. Our first experimental results of layering these three techniques has resulted in
both  an individual  entity and  a  group  of  robots  with  a  robust  interface  between
navigation control algorithms and the specific mission task on which they operate.
Such navigation strategies, as move-to-goal, are scalable since they are adjusted to
suit the degrees of freedom (DoF) capabilities of each vehicle and its environment.
The level of behavior paradigm allows scaling to exactly match hardware in the UAV
with the maximum functionality possible.  

Incremental Adaptation
Modular-functional decomposition is a fundamental tenet of the field of computer

science. We build modular-functional decomposition “building blocks” that are either
computer generated GP or a hand-coded (i.e., 2D or 3D motion planner, autopilot).
Each building block has deliberative behaviors when dealing with its environment via
input and output connectors. Each building block is incrementally adaptive for level
of fidelity.  Incremental adaptation is not a simple combination of building blocks; it
is an  enhancement  an  existing  building  block.   Individual  components  are  black
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boxes  encapsulating  control  knowledge  that  are  algorithms  provided  from
biomechanics, robotic, animation or any field of literature.  The components are as
simple as complex as needed.  For example, a module could initially be quite minimal
but enhanced as coding permits.  Or, the opposite, functionality is restricted for real-
time performance.  Or, in the GP module, successive generations can pre-select more
sophisticated challenges as well as more refined solutions.  In our adaptive waypoint
example, the module consists of two-layer hierarchy of a real-time 2D motion planner
that  provides  a  fast  waypoint  for  ANY  UAV  and  a  trajectory  smoother  for  a
SPECIFIC UAV.  The results are put into the UAV’s flight dynamics model.

Graduated Embodiment
Modular-functional decomposition is certainly a legitimate architectural principle;

it  is  hardly  the  only  one possible.  Reactive  robotics  has  tended  towards  layered
architecture with modifying functionality rather than to the “black-box” organization.
We build interacting “building blocks” that can be either computer generated GP or a
hand-coded  (i.e.,  collision  detection,  threat  avoidance).   An  interacting  “building
block”  is  one  in  which  information  is  continually  being  sensed  and  behavior  is
continually being generated.  Crucial to the distinction between modular-functional
decomposition “building block” and an interaction “building block” is the idea that
interactive  systems  are  always  operating  concurrently/embodied  with  their
environment.  Traditional computer procedures work from input at the beginning to
output at the end; they are blissfully ignorant of their environment while executing.
In contrast, an interactive (sub-) system is always responding to its environment. Each
building  block  has  reactive  behaviors.  Each  building  block  is  graduated  through
increasing levels of fidelity.  With complete switching between two distinct “building
blocks”, graduated embodiment simply adjusts the number of adaptable states and the
scope of their perturbation with the environment in a time-varying constraint.  We
apply a specific definition of embodiment and degree of embodiment [4] to quantity
our interactions.  For example, many degrees of freedom bear little relationship to the
entity’s  ability  to  navigate  and  we  can  use  the  same  coarse  collision  detection
independent of the UAV specifications.  If and only if a coarse collision is detected, a
finer grain algorithm will be deployed.  DoFs can also be eliminated when UAVs
move  in  unison  with  others  or  swarms.  Other  DoFs  may  need  to  be  added  to
accommodate a robotic swarm. 

Staged Optimization
Our  research  concentrates  on  how  the  resulting  solutions,  either  reactive  or

deliberate, may be integrated to yield composite controllers with significant broader
functionality. We build a “behavior graph” or a vertical and horizontal hierarchical
composable  control  structure  to  manage  the  interaction  between  the  modular-
functional  decomposition  and  the  interacting  building  blocks.  Our  graph  has
provision  for  static  parameters  (defined  as  input/output  functions),  dynamic
parameters (defined as a time-varying “instantaneous” value which maps observation
or  sensations  (input)  to  reactions  (output)),  and/or  pointers  to  code  containing
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algorithms for modular-functional decomposition and/or interacting building blocks.
Security is built into the system where each behavior graph value can have read or
write privileges to owner, group and world within the UAV and via network access.
The behavior graph is not a simple directed acyclic graph such as a scene graph in
graphics.   It  allows  for  feedback  loops.  Traversing  the  graph  is  based  on
preconditions, post-conditions, and expected performance that have been optimized
to resolve ambiguous transitions between behaviors.  The graph also has provisions
for level of fidelity. Each level of behavior of the building blocks can be switched on
or off or varying levels of fidelity in the traditional style or cross-pollinated in the
genetic  programming  style.  Rather  than  combining  all  building  blocks,  staged
optimization allows high-level behaviors to be evolved before progressing to details.
We feel that staged optimization is the key to scaling of the GPs.

The GP code generates an output file called the Level of Behavior (LOB) graph.
The data structure of the graph contains the algorithm with the appropriate multiple
arrays  to  keep  track  of  state  variables  (for  high  level  situational  awareness  and
decisions), calculated integers (for policy table flags), registers (genetically calculated
variables) and pointers (for multiple decision trees that depend on policy flags). Our
LOB graph differs from Finite State Machines in the diversity of the terminal nodes.
By generalizing the GP, behaviors for any environmental rules can be developed with
the same code, from the most basics (1 DoF, discrete space) to advance (6 or more
DoF,  continuous  space,  full  aerodynamics,  turbulent  boundary  layer).  The  LOB
graph, C++ object for the individual UAV, and C++ algorithm code for either the
incremental adaptation or graduated embodiment is shared by the GP and modeling
and simulation code.

Swarming Behavior Scenario Conceptual Model
The  ability  for  a  UAV group  to  swarm  is  actually  a  composite  of  numerous

behaviors  from  basic  navigation  to  performing  an  actual  goal  mission.   In  our
simplified example for illustration, we show six layers of composite behaviors. The
behaviors (Figure 1) are not meant to be taxonomy for autonomous vehicles but a
starting example of what is needed to perform a simple scenario mission in real-time
and the diversity of fidelity available in the algorithmic community. Sub-behaviors
may also be identified as the modeling and simulation progresses. Conditions have
been reduced to simple yes or no for illustrative purposes. In reality, the LOB graph
would be hard to illustrate for even this adaptive waypoint scenario.

Layer 1: Launch the  UAV-- The behaviors  can  range  from fly, un-tethered or
minimally human-assisted illustrating the flight phases of a model flight trajectory
(e.g., takeoff roll, takeoff, initial climb, on-path climb, cruise climb, initial descent,
approach descent, final descent, and landing) to air dropped from another vehicle
or sling-shot from a launching mechanism. 

                                             



Fig. 1. Adaptive Waypoint Scenario
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Layer 2: Validation of Hardware and Software-- The behaviors can range  from
preloaded task information that has been verified prior to launch  to dynamically
loaded task information where task is verified and validated in motion such as
checking sensor (i.e., camera) and GPS locations (i.e., first waypoint).

Layer 3: Factors Influencing the Path Utility-- Some constraints to consider are:
1. Collision detection – The behaviors can range from avoiding collisions during

all real-time behaviors with high-fidelity exact shape detection based on vision
sensors  to pre-determined  static  rough  shape  avoidance  with  no  dynamic
assistance or look ahead capability of a terrain following radar.

2. Region  Mapping  –  The  behaviors  can  range  from pre-determined  known
obstacle mapping to dynamic discovery. 

3. Goal Mission – In this example, the behavior is ATR ranging from multiple,
dynamic targets with adjustments for more exploration to single static targets,
report,  and  return-to-base.  Data collection or  communication techniques to
determine targets add further complexities to the behavior.

4. Threat Avoidance – The behaviors range from radar threat to line of sight. 
5. Collective Navigation -- The behaviors range from thousands of UAVs using

particle-in-cell  (PIC)  codes  performing  synchronized  arrival  over  diverse
environments  to two  UAVs
performing  bi-directional
communications  like  a  smaller
vehicle  is  deployed  from  a
mother  ship.  (Note:  PIC  is  a
special  instance  of  particle
simulation  code  where  forces
are  interpolated  onto  particles
from  a  mesh  to  improve
efficiency.   Forces  can  be
environmental,  behavioral,  or
directed.)

6. Other additional constraints can
be  added  when  coded.  The
above items  are  examples only
to  illustrate  the  behaviors  get
diverse quickly.

Layer 4: Adaptation of Waypoint-- The behaviors range from recalculation of next
waypoint to read next waypoint from queue.
Layer 5. Factors Influencing the UAV’s Motion--  Some constraints to consider
are:
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1. Vehicle movement – The behaviors range  from full flight dynamics models
including stopping, backwards, hovering to minimal one step forward motion.

2. Vehicle  curvature  –  The  behaviors  range  from full  weighted  b-spline
algorithms  for  smoothness  of  trajectory  based  on  parameters  such  as
maximum  turn  rate,  maximum  climb  rate,  degrees  of  freedom,  aggregate
altitude along mission path to no curvature allowed.

3. Vehicle sensors requirements – The behaviors range  from multiple sensors
with multiple perturbations with environment to no sensor. 

4. Vehicle modes of effectiveness  -- The behaviors range from high dependence
on swarm of UAVs to single individual reliability parameters based on travel,
fuel limitations, etc.

5. Vehicle  communication  requirements  –  The  behaviors  range  from large
transfers of video data in harsh environment conditions to minimal “I’m alive”
transmissions. 

6. Other additional constraints can be added when coded.  The above items are
examples only to illustrate the behaviors get diverse quickly. 

Layer 6.  Motion of  Vehicle--  The final  behavior  in  the  hierarchy is the  UAV
moves in REAL-TIME.

In  our  architecture,  the  LOB  graph  can  be  used  as  a  building  block.  If  all
parameters are static  with strict  input/output from a  module,  it  is  equivalent  to a
modular-functional decomposition building block. If the variables are dynamic with
time varying instantaneous values, the LOB graph functions as an interacting building
block.  If multiple building blocks are present, the LOB graph acts as a mechanism
for composing behaviors. The LOB files can be concatenated for a human-imposed
structure to the graph or computer-generated to a fitness function.  In our example,
Layer 3 and Layer 5 are NOT simple sequential behaviors. An optimized balance is
needed  and  quickly  becomes  a  factorial  problem  if  done  manually.  Staged
optimization is needed for scaling. For projects involving robot teams, a LOB graph
can be optimized for different fitness functions and tasked into different UAVs.

We develop a method of analysis that shows the quality of service metrics of each
individual UAV and a swarm.  This effort applies to swarm metrics but in general is
repeat of the work done at Sandia in 1988 known as the Gustafson-Barsis [2] Law:
the size of most problems is scaled up sufficiently, then any required efficiency (A
measure  of  hardware  utilization,  equal  to  the  ratio  of  speedup  achieved  on  P
processors to P itself.) can be achieved on any number of  processors. Or in other
words, the size of the goal mission is scaled up sufficiently, and then any required
efficiency  can  be  achieved by any  number of  UAVs operating in  a  swarm.  The
relative speedup or accuracy is where the single UAV execution time is divided by
the swarm execution time.
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4. Conclusions

In a deliberative, logic-based paradigm, mobile robot control is divided into sense,
plan,  and  act  phases,  with  each  phase  handled  respectively.  A  plan  equates  to
compute in a virtual world. The cycle of sense, plan, and act is repeated at regular and
very small time intervals throughout the agent’s operational period. This paradigm
works  best  for  well-defined,  represented  problems.  Unfortunately,  many  of  the
environments where embodied agents might be used (certainly in most real world
environments) demand that the agents make decisions with alacrity due to the high
rate of environmental change. As environments become more and more dynamic and
complex, the problems become more severe, eventually causing the agents based on a
sense/plan/act cycle to become impractical.  We need to show a diverse, distributed,
decentralized, and dynamic method for developing UAV control.  After developing
the individual UAV control genetically, we need to show a useful and self-organizing
method  for  the  UAV  to  become  part  of  a  swarm.  We  use  a  combination  of
deliberative and reactive algorithms. We developed a methodology for selecting the
algorithms  that  scale  between  full  fidelity,  incremental  adaptation  and  graduated
embodiment.   All  components  can  use  genetic  programs and  the  combination  of
techniques show that GPs scale.
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