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ABSTRACT

This report describes the development and application of genetic algorithms for the
purpose of directing robotic vehicles to various signal sources. The use of such vehicles
for surveillance and detection operations has become increasingly important in defense
and humanitarian applications. The computationally parallel programming model as
implemented on Sandia’s parallel compute cluster Siberia and used to develop the genetic
algorithm is discussed in detail. The model generates a computer program that, when
loaded into a robotic vehicle’s on-board computer, is designed to guide the robot to
successfully accomplish its task. A significant finding is that a genetic algorithm derived
for a simple, steady state signal source is robust enough to be applied to much more
complex, time-varying signals. Also, algorithms for significantly noisy signals were
found to be difficult to generate and should be the focus of future research. The
methodology may be used for a genetic programming model to develop tracking
behaviors for autonomous, micro-scale robotic vehicles.
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Development and Application of Genetic Algorithms
For Sandia’s RATLER Robotic Vehicles

Introduction

The emerging technical approach to deal with a challenging, possibly hostile,
environment is likely to involve a large number of small, but fairly intelligent, robots. It
is envisioned that these can covertly infiltrate a designated area, enter buildings, gather
appropriate information, and communicate with and learn from each other. They would
also communicate with a smaller number of on-the-scene soldiers backed up by powerful
off-line computers that can carry out large-scale information collection, analyses, and
simulations. Each robot would have on-board electronics, ground-positioning and
communication equipment, an obstacle detector, and some source-analysis capability.
Each robot would also have a motor, wheels, and a motor control system. Although the
deployed robots would behave autonomously, each robot would communicate
information with other robots during the task.

This report documents the effort to generate and apply a robust genetic algorithm to act
as a vehicle controlling program for robotic behavior. In a typical scenario, robots are
initially distributed randomly in a field and given the goal of locating the emitting source,
be it sound or smell. An onboard processor running the algorithm provides instructions to
the motor control system that directs the robot to the source location while navigating
around obstacles.

The controlling algorithm is generated by a computer code designed to assemble, test,
and compare many similar algorithms simultaneously. The code uses trial and error,
tournament play, and best fits to generate a decision tree appropriate for the task. Once
chosen, the decision tree then becomes the controlling algorithm of choice. The algorithm
in decision-tree form is then translated into high-level computer language such as
FORTRAN or C, compiled, and downloaded to the robotic vehicles deployed in the task.
The robotic vehicles are then controlled by execution of the code using onboard
processors, sensors, and memory.

The Sandia RATLER robotic vehicle serves as a research platform for the current effort.
Although the RATLER’s size precludes its large-scale use at present, further research
will see the capabilities of RATLER reduced to micro-scale vehicles. Operationally, it is
envisioned that tens to hundreds of these small robots would be deployed to complete a
given task.
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The Genetic Algorithm

Building a genetic algorithm is a compute-intensive process by virtue of the fact that it
continually attempts to create successive generations of more fit algorithms.
Improvement occurs in discrete steps called generations. A generation is composed of a
population of individual algorithms each of which is a complete computer program. The
number of algorithms considered at one time varies based on the problem; however,
hundreds, if not thousands, of genetic algorithms can be considered simultaneously by
judicious use of parallel computers. Typically, some algorithms will be more effective
than others at doing the prescribed task. Each algorithm is scored for applicability, and its
fitness is given a numerical score such that the higher the fitness, the better the algorithm.
The goal is to generate an algorithm that correctly solves the problem of interest.
However, there is no guarantee that the chosen algorithm is necessarily the best – usually,
it suffices.

To create subsequent generations, genetic operators of selection, reproduction, crossover,
and mutation are used. The purpose of selection is to choose an algorithm from the
current population. In general, this algorithm will be better than most, but it may not be
the very best. Reproduction moves a selected algorithm directly into the next generation.
Crossover uses the selection operator twice to select two algorithms from the current
population that will be combined in some way to form a hybrid algorithm that will be
placed in the next generation. Mutation uses the selection operator once to choose an
algorithm that will be changed in some way and placed in the next generation. The four
genetic operators are discussed in more detail by Koza[1] and Pryor[2]. The development
described above proceeds across many generations until a single algorithm is found that
meets a convergence criteria. This algorithm is then tested and, if found to be sufficiently
robust, implemented as the robotic controlling program.

Pryor[2] gives an example of the program representation of a decision tree making up a
genetic algorithm. The basic building block of a tree is called a node, with all nodes in
the tree having the same fixed structure. The first element of a node specifies the node
type, which can either be a function or a terminal. A function node performs a
mathematical or Boolean operation and generally has branches (nonzero pointers) that
point to other nodes. The number of branches depends on the kind of function, e.g., add,
subtract, multiply. A terminal node normally returns a value, does not have any branches
(all pointers are zero), and terminates that section of the tree. Other elements within a
node are a value position and pointers to other nodes. All of the nodes result in a decision
tree that performs a specified task. More detail is given in the next section.

Noise can have a significant impact in actual applications where genetic algorithms are
employed. Unless noise is accounted for during its creation, the genetic algorithm may
not be able to respond in an appropriate manner. Such was the case in the present
applications, as will be shown.

Table 1 lists functions allowed to make up the genetic algorithm.
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Table 1: Functions and Terminals Available for Genetic Algorithm Decision Tree

No. Function Name Mathematical Expression Comments

FUNCTIONS:
 1 RETURN Returns a value
 2 ADD + Adds two values
 3 SUBTRACT - Subtracts two values
 4 MULTIPLY * Multiplies two values
 5 IFGTEQ IF (value1 >= value2) Compares two values
 6 COMPUTE ANGLE Determines which direction robot

faces
 7 STORE A-REG Register for each robot
 8 STORE B-REG Register for each robot
 9 STORE C-REG Register for each robot
 10 INTEGER ROUND value=FLOOR(value1+0.5) Round to nearest integer value
 11 STORE AVG X-REG (1 - κ)*(AVG X-REG)

               +  κ*(AVG X-REG)
Exponential moving average for value
VWRUHG��  ����

 12 STORE AVG Y-REG (1 - κ)*(AVG Y-REG)
               +  κ*(AVG Y-REG)

Exponential moving average for value
VWRUHG��  ����

TERMINALS:
 13 NEIGH 1 XPOS First nearest neighbor’s X location
 14 NEIGH 2 XPOS Second nearest neighbor’s X location
 15 NEIGH 1 YPOS First nearest neighbor’s Y location
 16 NEIGH 2 YPOS Second nearest neighbor’s Y location
 17 ROBUG XPOS X location of robot
 18 ROBUG YPOS Y location of robot
 19 ROBUG DIRECTION 1=North, 2=East, 3=South,

4=West
Direction heading of robot (1,2,3, or
4) on grid

 20 NEIGH 1 SIGNAL Signal detected by first nearest
neighbor

 21 NEIGH 2 SIGNAL Signal detected by second nearest
neighbor

 22 ROBUG SIGNAL Signal detected by robot
 23 V-WALL XPOS North-South wall’s X location of

corner
 24 V-WALL YPOS North-South wall’s Y location of

corner
 25 H-WALL XPOS East-West wall’s X location of corner
 26 H-WALL YPOS East-West wall’s Y location of corner
 27 RECALL A-REG Use A-register’s contents
 28 RECALL B-REG Use B-register’s contents
 29 RECALL C-REG Use C-register’s contents
 30 TURN NORTH Directs robot to face North
 31 TURN EAST Directs robot to face East
 32 TURN SOUTH Directs robot to face South
 33 TURN WEST Directs robot to face West
 34 TURN RIGHT Directs robot to turn right
 35 MOVE AHEAD Directs robot to move ahead
 36 VALUE Store a value
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Program Representation of the Genetic Algorithm

This section describes how the genetic algorithm is represented by individual program
elements that make up a decision tree. The representation should always allow complete
flexibility in defining programs, yet it must also ensure that the performance of the
genetic operations is not too cumbersome. A tree-like structure best meets these
requirements.

The basic building block of a tree is called a node, with all nodes in the tree having the
same fixed structure. The first element of a node specifies the node type, which can either
be a function or a terminal. A function node performs a mathematical or Boolean
operation and generally has branches (nonzero pointers) that point to other nodes. The
number of branches depends on the kind of function, e.g., add, subtract, multiply. A
terminal node normally returns a value, does not have any branches (all pointers are
zero), and terminates that section of the tree. Other elements within a node are a value
position and pointers to other nodes.

Consider the sample decision tree shown in Fig. 1. This tree has five nodes and is three
levels deep. The tree is evaluated by starting at its root, or top, and working downward
until a terminal node is reached. A terminal node returns a value that is then processed
upward in the tree.

To evaluate the sample tree, we begin at the first node denoted by Start, a function node,
whose kind is specified as Add. This kind of function node points to two other nodes that
return values to be summed by the Add node. At Pointer 1, there is a terminal node that
returns a constant value of 2.3. At Pointer 2, there is a function node whose kind is
Multiply. This node uses Pointers 3 and 4 to point to two Value nodes: one that returns
the value 5.9, and the other the value of a global variable x. These two values are
processed by the Multiply node, which returns the resultant along with the value of 2.3 to
the Add node above it. The tree is equivalent to the expression

y = 2.3 + 5.9 x

where y is the value returned by the root node at the top of the tree.

Larger trees used in the robotics program have many more function and terminal types
than in the sample tree. The user specifies a maximum allowable number of nodes and
depths in the code that generates the genetic algorithm, but typical values are around 800
nodes with a maximum tree depth of 80 levels.
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Problem Setup

The computer code CEDAR has been written to assemble and test genetic algorithms
using computer-simulated robots. A listing of pseudo-code for CEDAR is given in
Appendix A. Using CEDAR’s most current genetic algorithm, the computer-simulated
robots solve a set of 90 problems to determine robustness and best fit for search-and-find
behavior. At the start of each problem, the simulated robots are placed in arbitrary
positions onto a two-dimensional grid and are tasked with finding an arbitrarily placed
target. The option exists to arbitrarily place two walls onto the same grid to have the
robots learn to avoid obstacles. The walls, if simulated, follow the grid lines in either the
x or y directions. The goal for the simulated robots is to learn to navigate to the target and
to avoid walls if present. The robots have no foreknowledge of either their own positions
or the positions of the walls and the target.

Fig. 2 illustrates a representative configuration at startup. Select sequences of graphs
show how the simulated robots converge on the two targets. Two signal sources, or
targets, are shown in blue. Each signal represents a 1/r2 source whose strength is
indicated by gray contours. Red circles randomly spaced about the blue targets represent
the robots. In this application, walls were included in the simulation and are shown by
heavy, intersecting lines. The position of each robot is given by a coordinate pair (x,y)
which are positive integers. A robot’s orientation can be in one of four directions, N, S,
E, or W, where north is towards the top of the page. The direction impacts the robot’s
sensing ability: a robot is programmed to only sense an obstruction if it is positioned in
the direction the robot is facing. As shown in the sequence, the simulated robots
successfully avoid the walls and converge on the targets, i.e., the signal peaks.

Certain assumptions related to actual robots are inherent in the problem setup. For
example, it is assumed that memory on the robot’s on-board computer is limited, and
only four values of data are stored. Also, communication between robots is limited to the
two nearest neighbors. The data that can be communicated consist of positions and signal
strengths. Because of assumed limits in the motor control system, only one movement
instruction can be returned with each execution of the behavior program. This instruction
allows the robot to move ahead one grid point or to turn to a new direction while
maintaining position.

CEDAR’s computer simulations to generate a suitable genetic algorithm consisted of a
population of 200 to 500 robots on each processor, running up to 128 processors on
Sandia’s compute cluster Siberia (http://www.cs.sandia.gov/cplant). Obstructive walls
were sometimes included so that the simulated robots would learn to maneuver around
obstacles. A photograph of Siberia, a cluster visually similar to an older cluster named
Alaska, is presented in Fig. 3. Siberia and Alaska’s configuration at the time of this
writing is given in Table 3.
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Signal Source Models

A total of four signal source models were considered. The equations governing each are
given in Table 2. Mathematical representations of the models, generated using
Mathematica[3], are shown in Fig. 4. The simplest model, Model 0, consists of a 1/r2

steady-state signal, as illustrated in Fig. 4a. Three time- and spatially-varying models
were also considered. Illustrated in Figs. 4b, c, and d are Models 1, 2, and 3, respectively.
Each of these functions has multiple local peaks that move around considerably as the
robots search for the most likely signal peak. A sample of the maximum-peak movement
for the unsteady models is given in Figs. 5a, b, and c.

Results

A. Simulation: Genetic Algorithm for Non-Noisy Signal Sources

The first attempts at generating genetic algorithms centered on modeling each signal
source model. Wall-like obstructions were placed randomly on the grid so that the
simulated robots would learn to maneuver around them. This became a very
computationally intensive process since the signal sources for Models 1, 2, and 3 were
time-varying and complicated, especially near the multiple center peaks.

Various attempts were made to accelerate the convergence. For example, more functions,
such as exponential and sinusoidal, were added to the code from which the genetic
algorithm would be generated. The reasoning behind this approach was that if the
algorithm needed an exponential function that would otherwise be built from Taylor-
series-like terms, for example, then adding this function to the list of possible functions to

Table 2. Equations for Signal Source Models

Model # Equation(s)
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be chosen would negate the necessity to build the Taylor series. However, this also
proved to be slowly convergent, possibly because the functions added too much
complexity to the simpler algorithm being generated at the time. Also, adding more
choices to the list of available functions algebraically increased the algorithm’s number
of options from which to choose as a decision tree was formed. That is, the function
could be considered for use in each node in a tree. As a result, convergence to a best-fit
algorithm became extremely tedious.

To alleviate the convergence problems, the authors decided to examine the possibilities
of using the algorithm generated for the steady-state Model 0 for the time-varying
models. No walls were simulated since it was decided that the to-be-conducted field tests
would not initially contain obstructions.

Simulated vehicle movement using the genetic algorithm derived for Model 0 was
generated using the code ROBOCOP, listed in Appendix B. The genetic algorithm
generated by CEDAR is inserted in the function MoveGA, the last function listed in
Appendix B, to complete the code. Sample output of ROBOCOP is presented in
Appendix C. The Mathematica program used to graphically display the results is given in
Appendix D.

The Model 0 result is illustrated in Fig. 6a, while the application of the identical
algorithm to the remaining models is shown in Figs. 6b, c, and d. As shown, the
algorithm worked very well for all signals for the sampling rates considered. This seems
a surprising result considering the complexity of the other models compared to Model 0.
However, further thought leads one to conclude that a single-peak-finding algorithm for
steady-state signals may well be sufficient even for time-varying, multiple-peak signal
sources as long as sampling rates are high relative to peak movement.

B. Field Test:  Coupling the Genetic Algorithm with Sandia’s RATLERs

The rovers used in the field tests were Sandia’s Robotic All-Terrain Lunar Exploration
Rover (RATLER) vehicles. Typical RATLER vehicles are shown in Fig. 7. The largest
are approximately the size of two shoeboxes placed side by side. RATLER vehicles were

 Table 3. Configuration of Sandia’s Parallel Compute Clusters
(go to http://www.cs.sandia.gov/cplant for more information).

ALASKA SIBERIA
Processor DEC Alpha EV 56 DEC Alpha EV6
Processor speed 500 MHz 500 MHz
Operating system Linux Linux
Total number of nodes 270 592
Number of processors per node 1 1
Memory per node 196 MBytes 560 nodes have 256 MBytes;

32 nodes have 1 GByte
Parallel I/O bandwidth
(scalable)

40 MBytes/sec over 4
network connections (enfs)

40 MBytes/sec over 4 network
connections (enfs)
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developed by Sandia as a prototype vehicle for a lunar mission. Each vehicle is typically
equipped with an Intel 486 computer, differential GPS receiver, spread spectrum two-
way packet radio, electronic compass and tilt sensors, video camera, and RF video
transmitter. Three RATLERs of the type shown in Fig. 7a were used during the tests.
This was the minimum number needed for vehicle-to-vehicle communications as
provided for in the genetic algorithm.

The base station equipment with which the RATLERs stay in constant communication
consists of a Pentium laptop computer, spread spectrum two-way packet radio,
differential GPS base receiver, RF video receiver, and a battery power source. The
equipment is contained within a small trailer for mobility. The base station sends
commands and queries to the RATLERs over the packet radio. The communication
network is configured as a token ring.  Hence, if the base station becomes non-functional,
the vehicles will continue to communicate. Also, if either the vehicle or base station
misses its turn to communicate, communications can be re-established after a specified
delay.

During field tests, the operator places the RATLERs in autonomous navigation mode.  A
live video image from one of the vehicles can be displayed on the laptop along with the
current position of the vehicle on a Geographic Information System (GIS) map. Multiple
RATLERs are driven to operator-specified set points using differential GPS and a
magnetic compass, where they are allowed to navigate on their own to the source using
the genetic algorithm controlling program. The positioning accuracy of the vehicles is
typically 1 meter.

As a result of its success in finding the peaks of all signal models, the algorithm for
Model 0 was implemented on robotic rovers for field tests. The signal source was a loud
speaker placed in a large field so as to closely simulate the 1/r2 Model 0 source. The
RATLERs were placed in a random position about the source. The genetic algorithm
previously loaded into the RATLERs onboard memory was then executed and the
vehicles were allowed to move about as directed by the algorithm.  No obstructions were
placed between the rovers and signal source.

Direct observations of the ensuing test were that the vehicles found the source but
wandered significantly beforehand. The wandering was attributed to signal noise that
may have been caused by nearby vehicle traffic, wind, and possibly electronic component
tolerances. Signal noise was not due to vehicle movement since signals were generated
only after each RATLER stopped momentarily. Base station equipment recorded the
noise to be as high as 10% of the signal source. Noise was not modeled in the initial
algorithm for Model 0.

It was also discovered that a RATLER acting alone showed nearly identical behavior to
that when all three were attempting to locate the target. This apparently indicated that the
vehicles were not communicating with each other even though provisions such as
registers were made available with the functions given in Table 1. Computer simulations
using only one simulated robot reinforced the conclusion that the vehicles were not
communicating as originally believed. Implications are that the vehicles were acting



12

autonomously and not collectively, as should be in the case of a swarm of vehicles. It is
unknown why this occurred, but it is certainly an area for future research.

C. Simulation: Non-Noisy Genetic Algorithm Applied to Noisy Signals

Noise was introduced into the signal source used in Model 0’s simulator. The original
genetic algorithm was then used to perform a post-mortem simulation and analysis of the
field tests. A random number generator was used to perturb the original signal within a
user-specified percentage at each time step. This would hopefully reveal the effects of
noise on the robot convergence path.

Results of the robot convergence path are illustrated in Fig. 8. Shown in Fig. 8a is the
convergence path for a 5% noise signal. The simulated rover finds the peak even though
the signal strength is slightly perturbed. However, an 8% perturbation causes the
simulated rover to never converge, as illustrated in Fig. 8b. Thus, the genetic algorithm
for Model 0 is apparently robust enough to handle small perturbations to around 5%.
However, higher perturbations cause the robot to wander as observed in the field test.

At this point, two alternatives became obvious to alleviate the wandering. The first
approach was to lower the signal noise in some way. This was quickly abandoned, since
the factors causing the noise levels were out of the operators’ control. It is also possible
that higher noise levels may exist during actual future applications and that these levels
could not be predicted beforehand.

The second approach was to introduce noise in the code that generates the genetic
algorithm.

D. Simulation: Genetic Algorithm for Noisy Signal Sources

It was thought that the genetic algorithm for Model 0 could be regenerated with the
ability to process noisy signals. The new algorithm, if successful, would allow the rovers
to find valid signal peaks even through a ‘dirty’ signal. Once again, so as not to add more
complexity to the problem, walls were not modeled.

Significant computer time was spent on this approach, but without much success. Project
deadlines prevented a thorough attack on this problem, but preliminary analyses indicated
simulated rovers would find their way to a fairly large distance from the peak, and no
closer. It is not entirely understood why this happened. However, better convergence
might be achieved if the algorithm ensured each rover communicated with some of its
nearest neighbors, thereby triangulating the signal source. As has been discussed, rover-
to-rover communications were apparently not occurring in the original Model 0 genetic
algorithm. Hence, another area of research should include a study of the ability of genetic
algorithms to intelligently process noisy signals.
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Summary and Conclusions

This report documents a research effort in which a genetic algorithm code was developed
and ported to Sandia’s parallel compute clusters. The code was modified to use the MPI
message passing protocol. Efficiency was improved by reducing excessive message
passing between the master node and slave nodes. The ability to investigate time-varying
signal sources was added to the original code. Visualization schemes were developed and
implemented for investigating simulated robot behavior before running field tests with
actual hardware.

The result of this effort, a genetic algorithm, has been implemented in hardware as a
robot controlling program. Field tests were conducted using Sandia’s RATLER robotic
vehicles attempting to locate a low humming stereo speaker. Tests were successful,
though significant wandering was observed that was not evident during computer
simulations. This behavior is believed to be due to signal noise. Project deadlines
prevented generating a genetic algorithm that could filter noise and locate the peak
efficiently. It was also noticed that the algorithm resulted in autonomous, rather than
collective, robot behavior.  The factors that govern this behavior should be a topic of
future research.

An interesting finding of this research was the fact that a genetic algorithm developed for
a simple test case proved very robust for more complex applications and signals.
Computer simulations showed that the algorithm developed for a simple 1/r2 case proved
sufficient for much more complicated applications. This should be kept in mind in any
future research involving applying genetic algorithms to complicated applications: keep it
as simple as possible. Extensions of simple algorithms may be possible for much more
complicated applications.

In conclusion, the authors believe genetic algorithms have a strong future at Sandia,
especially when applied to problems that have no definitive analytical answers, but where
a ‘good’ solution will do. Future areas of research should include an approach that
ensures rover-to-rover communications and the study of the effects of noisy signals on
obtaining acceptable rover behavior. It is hoped that this report gives impetus to
additional research in these areas so that more robust genetic algorithms may be
developed.
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Figure 1. Example of a 5-node, 3-level decision tree representing y=2.3 + 5.9x.
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Figure 2. Select, top-view convergence sequences of a representative genetic algorithm.
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Figure 3. Sandia’s parallel compute cluster, ALASKA/SIBERIA. For more
details, go to web site http://www.cs.sandia.gov/cplant.
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Figure 6. Concluded.
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b)

Figure 7. RATLER vehicles developed at Sandia National Laboratories.
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Figure 8. Model 0 source illustrating algorithmic convergence for 5% signal noise and
non-convergence for 8% signal noise.
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