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Abstract

The Reproducing Kernel Particle Method (RKPM) has many at-
tractive properties that make it ideal for treating a broad class of
physical problems. RKPM may be implemented in a “mesh-full” or a
“mesh-free” manner and provides the ability to tune the method, via
the selection of a window function and its associated dilation param-
eter, in order to achieve the requisite numerical performance. RKPM
also provides a framework for performing hierarchical computations
making it an ideal candidate for simulating multi-scale problems. Al-
though the method has many appealing attributes, it is quite new
and its numerical performance is still being quantified with respect
to more traditional discretization techniques. In order to assess the
numerical performance of RKPM, detailed studies of the method on
a series of model partial differential equations has been undertaken.
The results of von Neumann analyses for RKPM semi-discretizations
of one and two-dimensional, first and second-order wave equations are
presented in the form of phase and group errors. Excellent disper-
sion characteristics are found for the consistent mass matrix with the
proper choice of dilation parameter. In contrast, row-sum lumping the
mass matrix is demonstrated to introduce severe lagging phase errors.
A “higher-order” mass matrix improves the dispersion characteristics
relative to the lumped mass matrix but also yields significant lagging
phase errors relative to the fully integrated, consistent mass matrix.

Key Words: reproducing kernel particle methods, meshless, dispersion

1 Introduction

The accurate simulation of wave propagation or advection dominated pro-

cesses using discrete numerical schemes hinges upon having a clear under-

standing of the constraining numerical errors, and sufficient computational
resources to effect solutions at the requisite grid scale. Examples of this

may be seen when attempting to simulate wave propagation in an acous-
tic medium, or compute turbulent flow fields via direct numerical simulation
(DNS) or large eddy simulation (LES). In physical problems with a dominant

hyperbolic character, controlling the dispersive errors, i.e., phase and group

speed errors, to within 5% can require 8 to 10 grid points per wavelength with

traditional finite difference or lumped-mass finite element methods. Thus,

2



the simulation of hyperbolic problems is limited by the wavelength that the

grid can accurately represent. Further, a failure to respect the so-called grid

Nyquist limit can introduce deleterious aliasing effects that corrupt the sim-

ulation fidelity.
An alternative to traditional grid-based approaches is the class of meth-

ods based on moving least-squares, reproducing kernels, and partitions of
unity. An overview of the development of these methods is presented by Be-

lytschko, et al. 1 The methods based upon reproducing kernels are of interest

here because they promise to deliver enhanced numerical performance on a

broad range of physical problems and provide a framework for incorporating
multiresolution analysis.

Liu and his co-workers have been developing reproducing kernel particle

methods for a number of years and have demonstrated applications ranging

from structural acoustics to large deformation mechanics problems. 10-1215 In
addition, Liu, et al.g’17 have combined reproducing kernel ideas with multi-
resolution analysis using wavelets, permitting the decomposition of discrete

solutions into multiple scales. The application of RKPM to structural dy-
namics has been demonstrated by Liu, et al. 14 in addition to showing that

the reproducing kernel interpolation functions satisfy necessary consistency
18 have applied RKPM to acoustics problems demon-conditions. Uras, et al.

strating that the dilation parameter in the window function may be used to
perform the RKPM analogue of “h-p adaptivity”.

In a series of papers by Liu and Li6816 moving least squares reproduc-

ing kernel methods are developed beginning with the basic formulation and

continuing through a Fourier analysis and the incorporation of wavelet pack-
ets. The possibility for RKPM to deliver synchronized rates of convergence

for the discrete functions and their derivatives has also been explored by Li
and Liu. 7 The application of RKPM to nearly incompressible, hyper-elastic

solids was considered by Chen, et al.,2 while the treatment of large deforma-

tion problems has been explored by Liu, et al.5’13 The enrichment of finite
element computations with RKPM has also been addressed permitting local

regions of the computational domain to be treated with RKPM while the

global problem is treated with a standard finite element formulation.3
Although the application of RKPM has been demonstrated on a broad

class of problems, its numerical performance has not been quantified with re-
spect to more traditional methods. Here, numerical performance is broadly
defined to include truncation error, consistency and stability, rate of conver-
gence, dispersive character, and spatial adaptivity. In order to apply numer-
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ical methods such as RKPM to wave propagation or advection dominated

problems and faithfully represent the physics, a clear understanding of the

phase and group errors associated with the numerical method is necessary.

In general, the application of discrete methods to hyperbolic partial dif-

ferential equations can result in solutions that are dispersive even though the

physical model for wave propagation is non-dispersive. Dispersion errors are

typically characterized by the differences between the apparent, i.e., numeri-
cal, phase and group speed of waves and their exact counterparts. Phase and
group speed errors represent some of the most constraining numerical errors

associated with the simulation of wave propagation and advection dominated
flows.

In the context of linear acoustics, the phase speed is the speed at which

individual waves propagate. In the absence of dispersion, i.e., for a per-

fect acoustic fluid, this is simply the sound speed. In a dispersive acoustic

medium, the phase speed is a function of the frequency or wavelength of the

propagating wave. Thus, phase error may be viewed as a measure of the

influence of numerical dispersion on the apparent sound speed relative to the
true sound speed.

In contrast to the phase speed, the group speed describes the propagation
of wave packets that are comprised of short wavelength signals modulating

a slowly varying, longer wavelength envelope. Because the energy associated

with a wave packet travels with the packet, the group speed is often referred

to as the “energy” velocity. The group speed is also referred to as the speed
of modulation. For a non-dispersive medium the phase and group speed are
identical.

In discrete wave propagation problems, the group speed may be used to

study and explain the propagation of short wavelength oscillations that are
typically 2Az in wavelength where Ax is the characteristic mesh spacing.

Vichnevetsky 19’20 has demonstrated that spurious 2Ax oscillations, that are

induced by rapid changes in mesh resolution and at physical boundaries,
propagate at a group speed associated with a 2Ax wavelength.

The investigation of the dispersive errors associated with discrete solu-

tions is not new and has been used by numerous researchers to characterize
the performance of numerical methods. A brief review of earlier dispersion
analyses may be found in Christon .4 The focus of the current work is upon

characterizing the dispersive nature of the reproducing kernel particle method
for hyperbolic problems.

In the following sections, an overview of the dispersion analysis and a sum-
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mary of the formulae for computing the phase and group speed for RKPM

semi-discretizations of the first and second-order wave equations are pre-
sented. In section 3, the phase and group speed for both consistent, lumped,

and higher-order mass matrices are presented for both finite element and

RKPM semi-discretizations. Finally, the results of the dispersion analysis
are summarized and conclusions are drawn.

2 Formulation

This section begins with a brief overview of the reproducing kernel parti-

cle method. A detailed presentation of RKPM is beyond the scope of this
paper, and the reader is directed to the literature for details concerning

the method.2’3’5-18 Following the overview is a derivation of the formulae
for computing the normalized phase and group speed associated with semi-
discretizations of the model hyperbolic partial differential equations.

2.1 Reproducing Kernel Particle Formulation

For the sake of clarity, the following overview is limited to one spatial di-
mension although the formulation may be easily extended to higher dimen-

sions.2~1l! 12 The RKPM formulation begins with the notion of a kernel ap-

proximation of a function, U, on a domain, 0,

(1)

where p is the kernel function and UR is the continuous approximation to

U. 11’15 In order to address discrete problems, numerical quadrature (i.e.,
trapezoidal or particle integration) is used to evaluate Eq. (1) as

(2)

where Uh is the discrete analogue of UR, di are the particle coefficients,

and Np is the total number of particles in the domain, !2. 11 In general,

the coefficients, dz, are different from the value of the function at particle z

because the RKPM basis is non-nodal, i.e., it does not posses the Kronecker-
delta property.
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One of the most commonly used RKPM kernel
used here, is the cubic spline. In one-dimension,

function is

{

*[1-; Z’+;Z’] 2<1

p(z) = & [2 - z]’ 1 <.2

0 .Z>2

functions, and the one

the cubic spline kernel

<2, (3)

where z = [Z – xi [ /(rAz), xi is the position of particle i, Ax is the particle

spacing, and r is the refinement parameter.1,11)12The refinement parameter

controls the dilation of the kernel function, and subsequently, the domain

of influence for the function. For example, consider the cubic-spline window

function with a uniform particle distribution. In this case, r = 1/2 results in

support over 3 particles, while T = 1 results in support over 5 particles. In

this work, the optimal dilation parameter, r = 1.14, established by Liu and

Cheng to minimize aliasing error in terms of energy, is used.
In general, Eq. (2) will not exactly reproduce an arbitrary polynomial.

The accurate reproduction of polynomials to order p is ensured by introducing

a modified window function,

P

F(Z – Xi) = ~D/c(~)~(~ – ~Z) (X – ZZ)k, (4)

k=o

where ~k(%) represents a set of correction functions that vary within the
domain, C1.111’ The modified window function, P, replaces p in Eq. (2)

yielding
Np

Uh(X) = ~~(x – ~i)diA~i. (5)
2=1

The correction functions are determined by substituting Eq. (4) into Eq.

(5) and requiring that the resulting kernel approximation reproduce polyno-
mials to the desired order. For linear consistency, the following constraints

- ZZ)AZZ = 1

xi)xiAxi = X

(6)

(7)



From these equations, ,60(x) and /31(x) may be calculated in a point-wise

fashion in the domain. With the correction functions in hand, the requisite

derivatives for a Bubnov-Galerkin procedure may be computed. Although

the calculation of these derivatives is rather straight forward, the algebra

required is significant and the reader is directed to the work of Liu, et al.2’ 11’12
for details.

Remark

As a brief aside, consider the limiting case where the linear “hat

function” is used as the kernel function instead of the cubic-spline
of Eq. (3). In this case, the window function is

(8)

If the dilation parameter is unity, then the resulting basis ele-

ments are simply the linear finite element functions and yield the

usual form of the mass and stiffness operators.

In the ensuing dispersion analysis, tensor products of Eq. (3),

@(=+%)”’(=)’(%) (9)

are used to generate a two-dimensional kernel function with rectangular sup-

port. 1~12 The tensor-product kernel function in Eq. (9) is used with hi-linear

consistency enforced for the two-dimensional dispersion results presented in

section 3.

2.2 von Neumann Analysis

With the RKPM formulation outlined, the weak forms of two model partial

differential equations are presented with a brief description of the Fourier
analysis. To begin, the two-dimensional first and second-order wave equa-
tions are, in Cartesian coordinates,

NJ NJ du=o
~+cx — —

ax + Cy8?J
(lo)
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and,

(11)

where t is time, U is the unknown variable, c is the wave speed and (c., Cv) =
(c cos(d), c sin(d)) are the advection velocity components, and O is the advec-

tion direction measured from the x-axis. The semi-discrete forms of Eq. (10)
and (11) are required for the following analysis. The details for obtaining

the weak form of these equations are well known, and are not repeated here.

The semi-discrete forms of the first and second-order wave equations are

Md+Ad=O, (12)

and
Md+Kd=O, (13)

where A is the advection operator, K is the stiffness matrix and d is a vector

of unknown coefficients. In this analysis, a generalized mass matrix is used,

M = aMc+ (1 – a)M1, (14)

where Mc and Ml are the consistent and row-sum-lumped mass matrices
respectively, and O ~ a ~ 1.

Proceeding with the Fourier analysis, a plane wave solution is placed on

an infinite span (alternatively, on a finite domain with periodic boundary
conditions) in order to compare the exact and semi-discrete solutions. It can

be shown that the particle values, Uh, satisfy the same evolution equations as
the coefficients, d, when a periodic domain and symmetric window functions

are used 20 Thus, Eq. (12) and (13) may be rewritten in terms of Uh for the
purposes of this analysis, and the plane wave solution to Eq. (10) and (11)

may be expressed as

U(X, y, t) = UOexp[ut(xcos(~) + ysin(f3)) – uJt]. (15)

Here, U. is the amplitude, k is the wave number, d is the propagation direc-
tion of a plane wave measured from the x-axis, and L = ~.

Now, considering the regular distribution of particles shown in Figure 1,
any particle (i+ m, j + n) at coordinates (.z;+~, yj+n ) maybe located relative

any other particle (i, j) in terms of the particle spacing Ax, Ay. With the
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particle spacing defined, the generalized solution to the semi-discrete model

equations is

Uz+~,j+. = Uz,jexp[A(nzAx cos 6’ + nAy sin 0)], (16)

where Uz,j = UOexp[k(xi cos O+ yj sin 13)- uJt].

For a kernel function with arbitrary support, the semi-discrete forms of

the first and second-order wave equations may be rewritten for particle (z, j)

as

22{ }%,j),(i+t,j+m)m+l,j+m +A(i,j),(i+u+m)~i+l,j+rn= 0, (17)
1=–n m=–n ‘

and

1=–n m=–n

where ~(i,j),(i+~,j+m), ~(z,j),(i+z,j+m) and A(i,j),(i+l,j+m) are the mass, stiffness
and advection matrix entries on the row associated with particle (i, j ) and

the column associated with particle (i + 1,j + m). Here, the summation is

over the range of all particles under the support of the kernel function at
particle (2, j).

Substituting Eq. (16) and its associated temporal derivatives into Eq.

(17) and (18), equations for the circular frequency, w, in terms of the wavenum-

ber, wave propagation direction and particle spacing are obtained for the first

and second-order equations respectively.

n n

-iw~~[ ~(i,j),(i+~,j+m) ew(~~(zA~ COS(@)+ mAy sin(d)))] +
1=–n m=–n

n n

xx A(i,j),(i+l,j+ml exp(dc(lAx COS(0) + mAy sin(d))) = o (19)
1=–n m=–n

n n

-w’~~[ ~(i,j),(i+~,j+m) ew(~~(zA~ COS(~) + m& sin(o)))] +
1=–n m=–n

nix
1=–n m=–n

~(i,j),(z+~,j+m) exd~~(lA~COS(@)+ mAy sin(d)))]= O 20)
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The computation of the normalized phase and group speed proceeds by

solving for the circular frequency, w, and making use of the fact that for a
non-dispersive medium, c = w/k. The normalized phase speed is defined as
~ = z/c where z is the discrete phase speed. Rearranging Eq. (19) and (20)

yields

VI = 1 Er=-n x:=-n [A(2,j),(i+l,j+m) exP(~Hz~~ cos(~) + mAY sin(o))]
Ld ~;=_n ~:=–n [J’%j),(z+l,j+T7t) exp(&(ZAx COS(0) + mAy sin(0)))]

(21)

and

Ey=-. Z~=-n[K(i,j),(z+l,j+rn) ‘xP(Lk(ZAx CoS(o) + ‘AY ‘in(o)))]
X;=-nz:=-n[M(2)j),(i+l,j+m)exP(L~(lAxcos(O + mAYwo))l

(22)
for the first and second-order wave equations respectively.

The one-dimensional phase speed can be obtained from the two-dimensional

formulae by simply setting 19= O. Assuming that the kernel function is sym-

metric so that Mc and K are symmetric and A is anti-symmetric, the phase

speed for the first and second-order, one-dimensional semi-discretizations are

$,= A-
difm ‘

(23)

and

where

and

The normalized

where u~ = 8u/8k

d-# ~,
(24)

elk fm

n

f.= Ai,i+ 2 ~ sin(k.JAx)Ai,i+t, (25)
1=1

n

fm = Mi,i + 2 ~ cos(~lAx)Mi,i+lj (26)
1=1

f~ = Ki,i + 2 ~ cos(klAx)Ki,i+l. (27)
1=1

group speed, in one-dimension, is defined as < = v9/c,

Consideration of the normalized group velocity for the
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two-dimensional semi-discretizations introduces significant complexities that

make such analysis beyond the scope of this work.

Using Eq. (23) and (24), the normalized group speed in one-dimension is

and

for the first and second-order wave equations respectively.

n

(28)

Here,

(29)

ga = 8fa/8k z 2Ax ~ 1cos(~lAx)Ai,i+t
1=1

n

and

grn = ~jrn/8k = –2Ax ~lsin(klAx)Mi,i+l,
1=1

n

gk = ~fk/d~ = –2Ax ~ 1sin(klAx)Ki,i+l.
1=1

Remark

There have been no restrictions (other than symmetry) placed

on the form or type of basis functions used to obtain the mass,

stiffness or advection operators. Thus, Eq. (21) through (29)

are equally valid for Galerkin formulations that use the RKPM
functions or finite element basis functions.

3 Results

This section summarizes the results of the von Neumann analyses in terms of

phase and group speed for RKPM semi-discretizations of the one-dimensional
model hyperbolic equations followed by phase speed associated with the

(30)

(31)

(32)

two-dimensional equations

and group speeds defined

Unless otherwise noted, the normalized phase
in the previous section are referred to simply
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as phase and group speed in the remaining text. Both the one and two-

dimensional RKPM formulations use the cubic spline kernel function in
Eq. (3). Further, the two dimensional formulation uses the tensor product
in Eq. (9) to produce a two dimensional kernel function. Both spatial for-

mulations use the procedure outlined in Section 2.1 to generate modified

window functions that ensure linear (U(x) = 1 +x; one-dimensional) and bi-

linear (U(Z, y) = 1 + x + y + xy; two-dimensional) functions are reproduced

exactly.
For the purpose of comparison, results are presented for linear and bi-

linear finite element (FE) semi-discretizations. Here, the linear and hi-linear
finite element basis functions where chosen for comparison as they provide

the same order of consistency as the RKPM discretizations considered. The
FE phase and group speed are calculated using the formulae presented in

Section 2.2 with linear finite element basis functions.
In the discussion that follows, the phase and group speed results are

presented as functions of non-dimensional wave number, kAx/m = 2Ax/A.

In order to simplify the discussion, the following nomenclature has been

adopted to identify the the mass matrix and quadrature rule used for both

the FE and RKPM results. The mass matrix is identified as C for consistent
(a= 1), L lumped (a= O), or H higher-order (a= 1/2); cf. Eq. (14). The

numerical integration scheme is identified as either F indicating full Gauss

quadrature, or 2’ indicating a trapezoidal rule, i.e., particle integration.
The F nomenclature for “full Gauss quadrature” indicates a 2 x 2 quadra-

ture rule for the hi-linear finite element and a 4 x 4 quadrature rule for the
RKPM formulation. In the case of the RKPM formulation, the sensitivity of
the matrix entries with respect to the quadrature rule was tested and demon-

strated that the entries did not change with increased number of quadrature

points beyond 4 x 4. For trapezoidal (particle) integration, the particle loca-

tions are used as quadrature points. Here, the motivation for consideration
of particle integration is the potential reduction in computational complexity
gained by elimination of the background integration mesh which also results

in a truly mesh-free method.

3.1 One-Dimensional Hyperbolic Equations

In this section, the phase and group speed for the semi-discrete, one-dimensional,
first and second-order wave equations are presented.



3.1.1 First-Order Wave Equation

Phase and group speed for the linear finite element semi-discretizations of

the first-order wave equation are presented in Figure 2. Results are plotted
for fully integrated, consistent (CF), lumped (LF) and higher-order (HF)

mass matrix formulations. As shown, the FE formulations introduce strictly

lagging phase speed for all wavelengths considered with the CF formulation

delivering smaller phase errors up to the 2Ax limit. All three mass matrices
result in a phase speed of zero at 2Ax/A = 1, i.e., wavelengths of 2Ax are
stationary on the grid.

The finite element discretizations also yield strictly lagging group speed
for all three mass matrices. However, the lumped mass matrix yields a zero

group speed for 4Ax wavelengths while both the CF and HF mass matrices

have zero group speed at shorter wavelengths. The CF formulation performs

better than the LF and HF formulations, i.e., yields smaller group errors for
A > 3Ax. All three formulations yield negative group speeds for short wave-

lengths indicating that the energy associated with 2Ax wavelength signals
propagates in the opposite direction of the longer wavelength signals. Sur-

prisingly, the LF formulation yields the smallest, albeit still negative group

speed in the limit of 2Ax wavelengths.
Figure 3 shows the phase and group speed for the one-dimensional RKPM

semi-discretizations of the first-order wave equation. Again, fully integrated

consistent (CF), lumped (LF) and higher-order (HF) mass matrix formula-

tions are presented. In addition, results are shown for the consistent mass
matrix formulation with particle integration of the advection and mass matri-

ces (CT). As with the FE results in Figure 2, the RKPM method introduces
lagging phase errors over the discrete spectrum of wavelengths. The con-

sistent mass (CF) formulation performs the best and delivers significantly
better phase speed relative to the FE results presented in Figure 2. In order
to quantify the increased performance of the RKPM-CF method, consider
a phase error, e = [1 – @1, of 5?70 or less to be appropriate for engineering

purposes. For the FE-CF method, this criterion corresponds to 4Ax or 5

grid-points per wavelength. In contrast, the RKPM-CF and CT methods

require 2 – 3Ax, or approximately 3 – 4 particles per wavelength. While
both the RKPM-CF and CT methods perform quite well, the lumped and

higher-order formulations introduce severe lagging phase errors relative to

their finite element counterparts.
In terms of the group speed, both the RKPM-CT and CF formulations
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are far superior to the LF and HF formulations. Similar to the phase speed,

the CT formulation yields lagging group errors at longer wavelengths than

the CF formulation. However, the trapezoidal mass matrix, CT, avoids the

large negative group speed associated with the fully-integrated, CF, matrix

at 2Ax wavelengths. Both the FE-CF and RKPM-CT formulations yield

negative group speed for wavelengths shorter than 3Ax, while the RKPM-

CF formulation produces negative group speed for wavelengths shorter than

about 2. 5Ax. However, the group error associated with 2Ax wavelengths for
the RKPM-CF formulation is over 3 times larger than for the FE-CF case and

is 10 times larger than the sound speed. From these results it is apparent that

the RKPM-CT and CF formulations exhibit very good dispersive behavior,
discounting the large negative group speed for the RKPM-CF case, with

consistency identical to the finite element formulation.

3.1.2 Second-Order Wave Equation

Phase and group speeds for the linear finite element semi-discretizations of

the second-order wave equation are presented in Figure 4 for the fully inte-

grated, consistent, lumped and higher-orcler mass matrix formulations. The

consistent mass formulation (CF) introduces leading phase errors while the

lumped (LF) and higher-order (HF) methods exhibit strictly lagging phase

errors. Additionally, both the LF and HF methods demonstrate lagging

group speed for all wavelengths considered while the CF group speed is lead-
ing for 2Az/A <0.85.

Figure 5 shows the phase and group speeds for the one-dimensional,

second-order wave RKPM semi-discretization using the CF, CT, LF and

HF formulations. Relative to the FE results of Figure 4, the consistent mass
matrix (CF) provides better phase and group speed. Surprisingly, the trape-

zoidal mass formulation (CT) yields zero phase speed for 2Ax wavelengths,

i.e., these wavelengths are stationary on the grid. Additionally, the CT for-

mulation results in large, lagging group errors for wavelengths shorter than

3Az. In contrast, the FE semi-discretizations do not yield any negative group
speeds.

Employing the 5% phase error criterion introduced earlier, the FE-HF

method requires approximately 4 nodes per wavelength while only 3 particles
are required for the RKPM-CF method. As with the RKPM discretization
of the first-order wave equation, the lumped and higher-order formulations
introduce severe lagging phase and group errors relative to both the FE
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counterparts and the CT and CF mass matrices.

3.2 Two-Dimensional Hyperbolic Equations

This section presents the phase speed results for the semi-discrete, two-

dimensional, hyperbolic equations. Results are plotted as functions of the
propagation angle, 0, and non-dimensional wave number. For this analy-

sis, the particle spacing is uniform with, Ay/Ar = 1. As with the one-

dimensional analyses, a refinement parameter of r = 1.14 based upon a min-
imum energy error is used in the RKPM formulation. In order to highlight

the directional dependence of the phase error, the phase speed is presented
with both polar and Cartesian plots. The phase speed results exhibit angu-

lar symmetry about propagation directions, 0, that are multiples of 7r/4 as

a result of the imposed uniform spacing of particles. However, the data is
presented for O ~ O < 27r for the sake of clarity.

3.2.1 First-Order Wave Equation

Phase speed plots for the semi-discrete first-order wave equation using the
fully integrated hi-linear finite element and a consistent mass matrix are

shown in Figure 6. The polar plot of Figure 6a shows phase speed as a
function of direction, 0, for several values of non-dimensional wavelength,

2Az/J. The non-circular phase speed contours emphasize the anisotropic

nature of wave propagation on the discrete mesh. Figure 6b presents the

results of Figure 6a at five propagation angles, t?. It is apparent from Figure

6 that a minimum error in phase speed occurs when the wave propagation

direction is 7r/4 from the x-axis. It is also apparent that the anisotropy

becomes more pronounced for shorter wavelengths, i.e., 2Ax/A > 0.4 (cf.
Figure 6a).

Phase speed results for the fully integrated “hi-linear” reproducing ker-
nel particle method using a consistent mass matrix are shown in Figure 7.
As with the FE formulation, the RKPM semi-discretization leads to strictly
lagging phase speed with minimum phase speed errors occurring for r3= 7r/4.

However, unlike FE, RKPM shows negligible phase error in this direction.

Further, relative to the finite element method, the anisotropic behavior has

been significantly reduced, with wave propagation being effectively indepen-

dent of wavelength and propagation direction for 2Ax/A s 0.8, i.e., for
wavelengths greater than about 2 – 3Az.
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Figure 8shows polar and Cartesian plots of the phase speed for the “bi-

linear” RKPM formulation using trapezoidal integration and a consistent

mass matrix. Again, the phase speed is lagging and anisotropic, with mini-

mum errors occurring in the 0 = 7r/4 directions. Although the phase speed
appears anisotropic for short wavelength signals, this formulation delivers
nearly isotropic wave propagation for 2Ax/A s 0.6, i.e., wavelengths greater

than 3 – 4Ax.

3.2.2 Second-Order Wave Equation

Figure 9 shows phase speed results for the second-order wave semi-discretization

using a fully integrated hi-linear finite element method with a consistent mass
matrix. The results indicate that the finite element formulation introduces

strictly leading phase errors. The finite element semi-discretization results

in anisotropic wave propagation, with a minimum phase error occurring in

the 0 = 7r/4 propagation directions. However, the anisotropy is not as pro-

nounced as for the first-order equation (cf. Figure 6)
The fully integrated “hi-linear” RKPM semi-discretization (consistent

mass matrix) yields almost negligible phase errors as shown in Figure 10.

Further, as phase errors are quite small fc}r all 0, wave propagation is nearly

perfectly isotropic. Some slight leading phase speed errors are evident for
wavelengths approaching 2Ax. However, these errors are less than 2.5% with

a minimum in phase error occurring in the O = T/4 propagation directions.

Finally, Figure 11 shows the phase speed results for “hi-linear” RKPM
semi-discretization using trapezoidal integration with a consistent mass ma-
trix. Unlike the fully integrated results, anisotropic dispersion errors are

quite evident for 2Ax/A >0.6. However, for 2Ax/A s 0.6 phase errors are
negligible and are significantly better than for the FE case (cf. Figure 9).

Similar to the fully-integrated RKPM semi-discretization, the phase errors
are minimized in the 7r/4 propagation directions, but with nearly perfect
phase speed for wavelengths longer than 3 – 4Ax.

Remark

During the course of analyzing the results from the von Neumann
analysis it was observed that the use of trapezoidal integration
results in identical dispersion relations for the first and second-
order wave equations with a consistent mass matrix. The fact
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that the discrete spectrum or symbol20 for the first and second-
order wave equations are identical may be seen clearly in Figures

3 and 5 for the one-dimensional case. Similarly, for the two-
dimensional case, the phase speed shown for the first-order wave
equation in Figure 8 is identical to the phase speed shown in

Figure 11.

Similar behavior has been noted by Vichnevetsky and Bowles20
when a second-order central difference approximation is applied
to both the first and second-order wave equation. In this situ-

ation, the semi-discrete first-order equation is a consistent rep-
resentation of the second-order wave equation. In the case of

RKPM, a similar result may be obtained in the one-dimensional
case for a refinement parameter, r = 1/2. However, we have been

unable to to verify this behavior analytically for r = 1.14. Re-
gardless of this, numerical experiments (cf. Figures 3, 5, 8, and

11 have verified that the discrete spectrum is identical for the two

model hyperbolic equations when particle integration is used.

4 Summary

This paper presents a

and Conclusions

dispersion analysis for RKPM semi-discretizations of

two model hyperbolic partial differential equations. The semi-discretizations
considered incorporate linear or hi-linear consistency (one or two-dimensional
forms respectively) and use variations on matrix integration (full Gauss

quadrature or particle integration) and type (consistent, lumped or higher
order). All formulations incorporate a cubic-spline kernel function with the

optimal refinement parameter of r = 1.14.

The results of the analyses presented here indicate that, for the formula-
tions considered, the consistent mass RKPM-CF semi-discretizations display

better dispersion properties than the finite element method with similar con-

sistency constraints. In a one-dimensional sense, phase errors of less than 570

are ensured with 3 to 4 particles per wavelength with RKPM while the FE
formulations require 4 to 5 nodes. Incredibly, RKPM semi-discretizations of

the second-order wave equation require only 3 particles per wavelength (the
Nyquist limit) for phase errors of less than 2.5 percent. In addition, wave

propagation with the consistent mass RKPM formulation in two-dimensions
is nearly isotropic in terms of angular dependence of the phase speed and in
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terms of the amplitude of the phase errors.

While the consistent mass matrix RKPM formulations perform quite well,

the lumped and higher order mass formulations introduce severely lagging
phase and group speeds. Thus, the performance of these formulations is quite
poor relative to their FE counterparts.

Finally, the consistent mass RKPM results indicate that minimal losses
in phase and group speed error result when particle integration of the ma-

trices is employed in place of full (Gauss) quadrature. With the sacrifice of
negative group speeds and a slight increase in phase speed errors, the use of

particle integration may significantly reduce computational cost by reducing

the number of quadrature points needed. Further, the method should be

simpler to implement as the background integration mesh can be eliminated.
However, further direct testing with particle integration is required.
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Figure 1: Particle distribution and wave propagation direction, 0, for the

dispersion analysis.
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Figure 2: One-dimensional phase (a) and group (b) speed results for the

first-order wave, linear finite element semi-discretization employing fully in-

tegrated, consistent (CF), lumped (LF) mass and higher-order (HF) matrix
formulations.
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Figure3: One-dimensional phase (a)andgroup (b)speed results forthe first-

order wave, Reproducing Kernel Particle semi-discretization employing full-
integration consistent (CF), lumped (LF), higher-order (HF) and trapezoidal

integration consistent (CT) mass matrix formulations.
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Figure 4: One-dimensional phase (a) and group (b) speed results for the

second-order wave, linear finite element semi-discretization employing full-
integration consistent (CF), lumped (LF) and higher-order (HF) mass matrix
formulations.
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Figure 5: One-dimensional phase (a) and group (b) speed results for the

second-order wave, Reproducing Kernel Particle semi-discretization employ-
ing the full-integration, consistent (CF), lumped (LF), higher-order (HF) and
trapezoidal integration consistent (CT) mass matrix formulations.
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Figure 6: Polar (a) and Cartesian (b) plots of the phase speed for the FE

semi-discretization of the two-dimensional, first-order wave equation employ-
ing a full-integration, consistent mass matrix formulation (CF).
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Figure 7: Polar (a) and Cartesian (b) plots of the phase speed for the RKPM

semi-discretization of the two-dimensional, first-order wave equation with
full-integration, and a consistent mass matrix (CF).
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Figure 8: Polar (a) and Cartesian (b) plots of the phase speed for the RKPM

semi-discretization of the two-dimensional, first-order wave equation with a
consistent mass matrix and trapezoidal integration (CT).
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Figure 9: Polar (a) and Cartesian (b) plots of the phase speed for the FE

semi-discretizat ion of the two-dimensional, second-order wave equation using

a full-integration, consistent mass matrix formulation (CF).
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Figure 10: Polar (a) and Cartesian (b) plots of the phase speed for the RKPM
semi-discretization of the two-dimensional, second-order wave equation using
full-integration and a consistent mass matrix (CF).
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Figurell: Polar (a)and Cartesian (b)plots of thephase speed forthe RKPM

semi-discretization of the two-dimensional, second-order wave equation using
a consistent mass matrix and trapezoidal integration (CT).
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