
Measuring Progress in Order
Verification

Patrick Knupp*
Optimization and Uncertainty Estimation

Curtis Ober
Exploratory Simulation Technology

Ryan Bond
Aerosciences

7th World Congress on Computational Mechanics
July 16 – 22, 2006, Los Angeles, California

Minisymposium: Accomplishments and Challenges in Verification & Validation

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Measuring Progress in Order Verification
Pilch (Kusnezov):

“How does one measure & communicate progress in Verification from the
perspective of code development and application?”

Motivation:
Help program managers make decisions on where to invest
Help code developers assess completeness of test-suites

Scope of this Study:

-Code Verification, not Solution Verification

-Order-verification (for analysts, stakeholders, & managers), not
-Regression Testing,
-Unit tests,
-Physical benchmark tests,
-Functional Tests without mesh refinement
-Code to code comparisons,
-Robustness tests,
-Efficiency tests
-Algorithm development tests (can use OV for developers)

Measuring Progress in Order Verification

Report: SAND2005-6894 (Initial Theory Document)

Definition: Order-of-accuracy code (OA-code)
A code that employs one or more discretization algorithms to numerically solve sets of
‘governing’ equations and can display an ‘observed’ order-of-accuracy if the domain
discretization is uniformly refined. (e.g., a ‘physics’ code)

Definition: Static Code
A static code is a code (or code version) whose lines are not changing
with time. We assume static codes until near the end of this talk.

Measuring Progress in Order Verification

Definition: Order-verification (OV)
Applying tests that involve known exact solutions and mesh/temporal refinement studies
to OA-codes for the purpose of verifying the target order-of-accuracy of the underlying
algorithms employed by the code.

Exact Solutions: Traditional PDE or Manufactured Solutions.

Target Accuracy: either the formal or the expected order-of-accuracy.

Formal Accuracy: A mathematically derived a-priori order-of-accuracy.

Expected Accuracy: An order-of-accuracy demanded or desired by the code developer.
Surrogate for formal.

Measuring Progress in Order Verification

Why focus on order-verification?

Benefits of Order-Verification:
1. Detects & eliminates coding mistakes which impact order-of-accuracy,
2. Identifies deficiencies in algorithmic formulations,
3. Demonstrate to others that the code has been rigorously tested with

regard to solution correctness.
4. Provides solid foundation for solution verification, validation, UQ, etc.

Thesis: Order-verification is a significant activity in code verification for which
progress can be measured.

Open Issue: Can this approach be extended to other types of verification?

Measuring Progress in Order Verification

Definition: Order-of-accuracy Test (OAT)
An order-of-accuracy test is associated with a particular OA-code and consists
of a finite set of functional tests corresponding to a sufficiently large sequence
of uniformly refined domain discretizations. Each test solves the same governing
equation and the exact solution is known.

The outcome of a successful OAT is a well-established observed
order-of-accuracy for each of the dependent variables and related quantities.
If the observed order matches the target order-of-accuracy, then the target order
(and associated code implementation associated) has been verified by the OAT.

Advice: To increase the likelihood of a successful test, an OAT should not challenge
the code in term of robustness, execution time, or memory.

Measuring Progress in Order Verification

Definition: Complete OAT
An OAT is complete when all the code inputs needed to execute the OAT
have been defined (i.e., fully functioning input deck).

Definition: Redundant OAT
An OAT is redundant if there already exists another OAT which solves precisely the same
governing equations, on a “similar” domain, with “equivalent” numerical solution parameters,
and same mesh type.

Claim: The target order-of-accuracy of a redundant OAT is the same as the target
order of the other OAT and, if the target order-of-accuracy of the other OAT was matched,
then the target order of the redundant OAT must also match. (working assumption)

Measuring Progress in Order Verification

Definition: Order-verification domain (OV-domain) Ω
The OV-domain (of a static OA-code) consists of the set of lines of code
which can influence or determine the outcome of any OAT. (theoretical construct)

Claim: The OV-domain is a large subset of the total lines of code: 80-90% ?
• Covers any ordered discretization algorithm and supporting infrastructure
- Covers supporting functions & sub-models, solvers
- Glue code, I/O

Examples:
• Implementation of interior equation spatial & temporal discretization,
• PDE & BC coefficient implementations,
• Implementation of BC spatial & temporal discretizations,
• Algorithmic formulations which impact order-of-accuracy,
• Anything impacting solution correctness.

Measuring Progress in Order Verification

Order-verification does not eliminate the need for other tests.

Examples:
- Tests which cover implementation of code features outside the OV-domain,

(efficiency tests, robustness tests),
- Tests performed routinely (nightly regression tests)

Observations:
Lines of code within the OV-domain often can (and perhaps should) be tested by other

kinds of tests: e.g., unit tests, functional tests not involving grid refinement.

Sometimes coding mistakes related to lines not in the OV-domain are
found during the course of order-verification, but this cannot be relied on.

Some coding mistakes and algorithmic problems are difficult to find without order-
verification.

Order-verification is a code diagnostic, not a treatment for what ails the code. Verify when:
(a) you believe the code solutions are correct, or (b) need hard evidence for solution
correctness to show to others

Measuring Progress in Order Verification

Definition: Particular Domain π
The particular domain of a static OA-code is an arbitrary subset of the OV-domain of the

code. π≤Ω

Examples of Particular Domains:
1. π = Ω, the OV-domain. (for verifying the code as a whole),
2. π = the set of lines in Ω which will be exercised on a particular project (e.g. design of a

device or component),
3. π = the set of lines in Ω which will be exercised in a particular validation study (tied to a

set of experiments)
4. π = the set of lines in Ω which will be exercised in a particular sensitivity study

Measuring Progress in Order Verification

Remarks on Particular Domains:

Although Ω may comprise a large fraction of the lines in the code, π may not.

A static code could have more than one particular-domain; lumping these all into
one domain may be easier to deal with in terms of mechanics.

The set of particular domains could change with time even though the code is static.

For now, assume there is one particular domain and that it does not change with time.

Measuring Progress in Order Verification

The Particular-Domain usually cannot be covered by a single OAT.

Definition: Order-Verification Test-Suite (OVTS)
A collection of OATs providing comprehensive coverage of the Particular-Domain
of a static OA-code is called an order-verification test suite.

Definition: An order-verification test suite is complete when all lines of code
within the Particular-Domain are covered by at least one OAT in the OVTS.

Proposition: A complete OVTS contains a finite number of tests.
The Particular-Domain of a static code contains a finite number of lines.
For every such line there exists an OAT which can test the line.
Therefore, a finite collection of OATS (forming an OVTS) can test
all the lines in the Particular-Domain. (Theoretical statement).

Measuring Progress in Order Verification

Remarks

Should the OVTS be complete?
•Completeness is an ideal and may be difficult to demonstrate in practice,
•Many lines of code in the Particular-domain can probably be tested

more easily with a unit or other test,
•OVTS does need to be comprehensive (in-depth coverage) in order to have

high-significance & to measure progress.

How are code coverage decisions currently made?
In terms of order-verification, a systematic process for
(a) identifying coverage gaps, and
(b) deciding what parts of a code should be tested and which parts

can be neglected, ignored, or assigned low-priority,
is generally lacking. That which is tested is therefore semi-arbitrary.

If a gap is identified, it is difficult to justify not testing to cover the gap,
particularly when solution correctness is at stake. Comprehensive
test-suites to cover these gaps can be created using the Method of
Manufactured Solutions.

More insidious: a gap exists but is not identified.

Measuring Progress in Order Verification

Definition: Order-Verification Exercise

An Order-verification exercise (OVE) consists of two sequential phases:

First: OVTS Construction:

Determine the Particular Domain,
Identify candidate OATs,
Apply OVTS admission criteria

Second: OVTS Demonstration:

Prioritize the OAT to determine order of execution,
Complete the OATs: implement exact solution, source terms, mesh,
Execute the OATs to obtain numerical solutions on each mesh,
Converge the OATs: Identify & fix coding, algorithmic mistakes,
Match all the expected orders-of-accuracy,
Documentation, archiving, regression

Both of these phases can take considerable time & resources and
thus need progress measures.

Measuring Progress in Order Verification

Phase I: Test Suite Construction

OVTS completeness is the ideal.
How does one determine the finite number of OATs that comprise
a complete OVTS?

Convene a panel of experts (code developers & outside experts)
for test-suite construction:
- define order-of-accuracy tests (OATs) to include,
- determine when order-verification test suite is comprehensive

Bottom-up approach is not practical.
Examine each line of code to determine if it is in the Particular-domain and construct
an OAT for it if one doesn’t already exist.

Top-down approach: Start with high-level knowledge and iterate

Open Issue: how can OVTS construction procedures be automated or semi-
automated?

Measuring Progress in Order Verification
Definition: Governing Equations
The high-level equations solved by an OA-code.
(e.g., the heat equation, Navier-Stokes, NS and Euler).

Definition: Particular Governing Equations
A particular instance of the governing equations.
(e.g., the steady heat equation with temperature-dependent conductivity)

Definition: Auxiliary Equations
The high-level boundary conditions, initial conditions, and domains
belonging to the OA-code.

Definition: Particular Auxiliary Equations
The particular boundary conditions, initial conditions, and domain associated
with a given particular governing equation.

Assumption: The set of particular governing & auxiliary equations (and combinations
thereof) solved by a static OA-code is finite and can be enumerated.

Measuring Progress in Order Verification
Iterative Method for Order-Verification Test-Suite Construction

1. Construct an arbitrary, but complete OAT for the given OA-code.
(Can use existing OATs)

2. At stage n, the test-suite contains OAT-1, …, OAT-n.

3. Let OAT-(n+1) be a candidate for admission to the OVTS.

Admit OAT-(n+1) if it requires (in principle) a new analysis to determine
formal order-of-accuracy, or if it

• covers a particular equation, or
• covers an particular auxiliary equation (BC, IC, domain), or
• covers a numerical method (limiter, stabilizer, solver), or
• covers a shape function, element type, or mesh-type, or
• covers an important new combination of options

not otherwise covered

4. Continue until no further candidate OATs can be conceived which are not redundant.

Measuring Progress in Order Verification

Remark
The iteratively-constructed test-suite is non-unique. OVTS is determined by the
initial set of tests admitted, the order in which additional tests are added, and
the granularity of the OATS. Non-uniqueness can impact measures of progress,
but is not a major issue because any information is better than no information.

Measuring Progress in the Construction Phase:
- Count the total number of tests created vs time,
- Plot the OVTS coverage fraction vs time

f = (# lines in code covered by OVTS)/(# lines in code)

Final value of f gives an estimate of the size of π relative to Ω

Issue: if π≠Ω, the denominator may not be an adequate normalization.

Measuring Progress in Order Verification

More Remarks
- OVTS is fully defined before demonstration phase begins.
- One is not allowed to change the test-suite during the demonstration phase.

Advantages of constructing test-suites in advance of test execution:
- Focuses attention on finding coverage gaps, thus completeness is more likely,
-Test sequencing in demonstration phase can be prioritized in advance,
- Progress in Test-suite demonstration can be properly normalized, so

we’ll know where we’re going and when we’re done.

If OVTS not constructed in-advance, but ‘on-the-fly’, none of the above are
guaranteed (business as usual).

Measuring Progress in Order Verification

Phase II. Test-Suite Demonstration

Demonstration = execution of the OATs in the OVTS to obtain outcomes

Assume that a comprehensive OVTS has been constructed for a
static code or version.

The number of tests in the OVTS is finite & fixed because the OVTS
is associated with a static code.

Measuring Progress in Order Verification

The OVTS Demonstration Activities

Level OAT Status Required Activity Failure Mode

0 Incomplete Create exact solution, source terms, mesh,
other

No exact solution, incomplete
input

1 Ready
(OAT complete)

Obtain numerical solutions for each mesh level Missing numerical solutions

2 Numerical
Solutions Exist

Reach asymptotic regime Un-converged solutions or
Non-definitive observed order

3 All solutions
Asymptotic

Match Observed & Target Orders-of-accuracy Inaccurate solutions

4 All orders
Verified

Make OAT reproducible via documentation,
archiving, moving to regression mode

Not reproducible

5 OAT
Reproducible

Proceed to next OAT

Measuring Progress in Order Verification

∑
=

=
N

n
ns

NsP
15

1,)(
)(

1
l

lπ

)(lns

ln

First Progress Measure (status-based)

Let there be N OATs in the OVTS, n = 1, 2, …, N

Let be the status level of the n-th OAT (ranges from 0 to 5).

Let be the score assigned to the n-th status level

OVTS Demonstration Progress Measure:

(function of time)

Number of OATs having
a given status level

0

5

10

15

20

25

0 1 2 3 4 5

Tests at

10 1, ≤≤ Pπ

Measuring Progress in Order Verification

Second Progress Measure (outcome-based)

∑ ∑
= =

=
N

n j jn

jn

n

J

p
q

JN
tP

n

1 1 ,

,
2,

11)(π

N is the number of OATs, J_n is the number of outcomes in
the n-th test, q_{n,j} is the j-th observation of the n-th test, and p_{n,j}
Is the target order-of-accuracy of the j-th observation in the n-th test.

P2 is an average, ranges from 0 to 1 (mostly), q=0 if test not performed
Can be plotted over time to visualize progress.

Measuring Progress in Order Verification

Third Progress Measure (Function-based)

P3(t) = (# functions covered by passed OATs)/(# functions covered by OVTS)

Fourth Progress Measure (Keyword-based)

P4(t) = (# keywords covered by passed OATs)/(# keywords covered by OVTS)

Fifth Progress Measure (Line-based)

P5(t) = (# lines covered by passed OATs)/(# lines covered by OVTS)

Important: All these things (and more) can be measured once the test-suite has
been constructed, thus new measures can be easily tried.

Measuring Progress in Order Verification

PF ππ =

Definition: Verification-Fitness (of a code relative to an application)
The verification-fitness of a static code relative to a particular application pertains to the

fraction of relevant code lines, functions, and/or capabilities that have order-verified.

π is determined by the application. Thus verification-fitness measures the fraction of
the particular domain which has been verified. Let be the verification-fitness
measure for a given particular domain.

When π≠Ω, code is verified with regard to a particular application.

Then (progress measure is the fitness measure)

Advantage: Number of tests in OVTS may be smaller than if π=Ω,
particularly since #combinations that need to be tested is reduced.

Disadvantage: If the particular domain changes (new application comes along),
a new OVTS and OVE may required. (code-readiness issue).

Fπ

Measuring Progress in Order Verification

On the other hand,

when π=Ω, one verifies the whole code independently from applications.

Advantage: Code is potentially more ready in-advance of particular applications.

A concern: one can spend a lot of time verifying stuff that is not of immediate value.
In our opinion, this is not a major concern, however, because during test-suite
demonstration one can order the tests according to priority and these priorities
are allowed to change.

Disadvantage: Number of tests can be very large, particularly if all combinations are
tested.

Compromise Position:

Build OVTS for π=Ω, but neglect most combinations. This will cover core
capabilities. Then, as applications come along, add additional tests which address
particular combinations of interest.

Measuring Progress in Order Verification

Application-Fitness measure:
(generalized for π=Ω)

n s_n App 1:
w_n

App 2:
w_n

App 3:
w_n

w_n is an OAT prioritization weight that can be used to weight each test relative
to a particular application.

Indicates code suitability at a particular time relative to a particular
application with respect to order-verification status.

Fitness measure cannot be computed without OVTS.

1 0.5 0.25 0.5 0.0

2 1.0 0.25 0.5 0.0

3 0.0 0.25 0.0 0.5

4 0.25 0.25 0.0 0.5

F 7/16 12/16 2/16∑

∑

=

=
Ω

=

=

N

n
n

N

n
n

w

nswsF

1

15
1,

1

)(
)(

1
l

l

Measuring Progress in Order Verification

The non-static code case

Code is under current development, mainly to add capabilities for up-coming
new applications.

How can progress be measured in this scenario?

Measuring Progress in Order Verification

Current Model for Code Development & Testing

Time
Code
Dev.
Begins

Release R1 Release R2 Release R3

Regression Tests

Test Test Test Test Test Test Test

Develop Develop Develop Develop Develop Develop Develop

Tests are a mix of unit, functional, robustness, and (sometimes) order-verification.

--------------- App1----------------

--------------- App2----------------

--------------- App3----------------
--------------- App4----------------

Measuring Progress in Order Verification

Proposed Model for Non-Static Code Development & Testing

OVTS_n: Order-verification test-suite associated with a particular code version
OVTS_(n+1): OVTS associated with later code version.

Test-Suite Re-factoring (creating OVTS_(n+1) from OVTS_n):
- Start with OVTS from previous code version (includes both passed & not passed OATs).
- Eliminate tests which test capabilities no-longer supported or deprecated,
- Add tests for new supported capabilities,
- Add tests to cover new particular domain π (including relevant combinations)

OVE_n: The order-verification exercise associated with a particular code version.
OVE_(n+1): OVE associated with later code version. Includes re-factoring of OVTS_n.

Definition: Order-verification Regression Test-Suite (OVRTS):
Order-verification tests (OATs) belonging to an order-verification regression test-suite.

OVRTS_n: The OVRTS associated with a particular code version.
OVTRS_(n+1): The OVTS associated with a later code version.

As OVRTS expands, the traditional regression test-suite may contract.

Measuring Progress in Order Verification

Proposed Model for Non-Static Code Development & Testing

Time
Code
Dev.
Begins

Release R1 Release R2 Release R3

Current Development
& Testing Model

OVE on R1 OVE on R2 OVE on R3

Regression Tests
on R2 using passed
OATs from OVTS1

Regression Tests
on R3 using passed
OATs from OVTS2

Passed OATs feed into next OVTS & OVRTS

OV Regression Tests

Order-Verification
Exercises:

Measuring Progress in Order Verification

TimeCode
Dev.
Begins

R1 R2 R3

OVE on R1
OVE on R2

OVE on R3

OVTS1 Construction

OVTS1 Demonstration

OVTS2 Construction

OVTS2 Demonstration

OVTS3 Construction

1.0

0.0

Progress vs time

Comparison to Traditional Model
1. More emphasis on order-

verification (solution
correctness),

2. Test-suite determined in-advance,
more emphasis on
comprehensive test-suites,

3. Can measure progress in
meaningful way

Measuring Progress in Order Verification
Summary

Progress measures can help managers make good decision and assist code developers in assessing
code coverage

Order-verification is an important activity that directly addresses solution-correctness.

Effective measurement of progress requires pre-defined, comprehensive test-suites.

Once the OVTS created, it is cheap to calculate progress and fitness measures.

OVEs consist of an iterative test-suite construction phase and a demonstration phase.
Both phases take time and require different progress measures.

Better methods for semi-automatic test-suite construction (code coverage) are needed.

An application-centric verification-fitness measure indicates code order-verification status with respect
to a specific application.

Other types of code testing remain important and progress measures for those are needed.

Although this talk emphasized progress and fitness measures, the ultimate goal is to
encourage comprehensive order-verification.

Additional research is needed to fully flesh out this story.

Measuring Progress in Order Verification

The following talk illustrates the application of these ideas to the Premo code.

This code was chosen for its relatively extensive order-verification history.

Two viewpoints:
- what do the results tell us about measuring progress?
- what do the results tell us about Premo verification?

	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	Measuring Progress in Order Verification
	 Measuring Progress in Order Verification
	 Measuring Progress in Order Verification

