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We demonstrate use of a Jacobian-Free Newton-Krylov solver to enable strong thermal

coupling at the interface between a solid body and an external compressible fluid. Our

method requires only information typically used in loose coupling based on successive

substitution and is implemented within a multi-physics framework. We present results for

two external flows over thermally conducting solid bodies obtained using both loose and

strong coupling strategies. Performance of the two strategies is compared to elucidate both

advantages and caveats associated with strong coupling.

I. Introduction

O
ver the past two decades several single and specialized physics codes have been developed at Sandia
National Laboratories. During this time, computational capability has increased enormously as measured

by gains in CPU speed and memory capacity. This has led to a desire to perform more realistic physical
simulations comprising richer physics solved over finer discretizations. Enabling richer physics posed one of
two possibilities: either expand existing mature physics codes to incorporate new physics models or bring
existing physics codes together into an environment such that they can each provide a simulation component
of a larger multi-physics simulation. Many arguments can be made for the latter choice while respecting the
fact that the former choice has merit for special situations and for optimizing solution techniques for a fixed
set of multi-physics.

Recognizing the need to enable multi-physics simulations in a general and extensible way, Sandia has
recently worked to develop a common environment, i.e. framework, to leverage basic services such as I/O,
message-passing, element libraries, etc. Application codes brought into this environment can then send and
receive data from other applications, thereby enabling multi-physics simulations without requiring significant
re-writing of code. Independent of an application framework, Sandia has also worked to develop an extensible
solver framework, Trilinos.1 Overarching these two independent efforts is a desire to unite actively developed
application codes with actively developed solution software. The work presented in this paper represents an
example of the realization of this goal.

This paper addresses a particular multi-physics scenario comprising compressible external fluid flow over
a thermally conducting body. Fluid flow is simulated using the compressible flow code, Premo, while thermal
transport is solved using a separate code, Calore, both of which reside within the multi-physics framework,
Sierra.2 A common and straightforward coupling strategy consisting of successive substitution of results
between the codes is considered first. We refer to this as loose coupling. Next, we describe how a stronger
Newton-based coupling technique can be achieved using the same data employed to perform loose coupling.

Our paper is structured as follows. First, we describe the physical system to be modeled. This is followed
by a brief overview of the simulation codes Premo and Calore which provide solutions to compressible fluid
flow and thermal transport, respectively. The next section provides an overview of both loose coupling
via successive substitution and stronger Newton-based coupling performed using extensions to a nonlinear
solver package NOX3 which is part of Trilinos. Results obtained using the two coupling strategies are then
presented and performance compared. Finally, we provide our conclusions and ideas for future work.

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, A Lockheed Martin Company, for the United States
Department of Energy under Contract DE-AC04-94AL85000. This material is declared a work of the U.S. Government and is
not subject to copyright protection in the United States.
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II. Physical Problem

A
s shown in figures 1 and 2 we consider external compressible flow over a solid body whose temperature
is governed by linear heat conduction.

(a) Fluid domain and mesh having outer radius of 10.0. (b) Solid domain surface mesh having radial dimension
of 1.0.

Figure 1. Outer fluid and inner solid domains for external compressible flow over a thermally conducting

circular cylinder. A two-element planar slab of thickness 1.0 is used.

(a) Blunt-wedge fluid geometry and mesh configured to
capture a shock at Ma = 3.0.

(b) Blunt-wedge conducting solid geometry.

Figure 2. Blunt-wedge geometry.

For both geometries, fluid flow external to the solid body is modeled as viscous and compressible via the
Navier-Stokes equations. These can be expressed in the following form:
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is the inviscid flux vector, and

Fv · n =
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is the viscous flux vector. In the above, ρ is the density; ui = u with u = u1, v = u2, and w = u3 are the
Cartesian velocity components; p is the pressure; E is the total energy defined by E = e + u · u/2; e is the
specific internal energy defined by e = CvT ; Cv is the specific heat at constant volume; T is the temperature
defined for an ideal gas by p = ρRT ; R is the gas constant, ni = n is the surface normal vector; and δij is
the Kronecker delta. Corresponding to the conservative state vector W we define a primitive state vector
U = {ρ, u, v, w, p}T .

The viscous stress tensor is given by,

τij = µ

(

∂ui

∂xj

+
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−
2

3
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δij (2)

where µ is the molecular viscosity coefficient. Heat fluxes q are assumed to obey Fourier’s Law,

q = −κ∇T . (3)

and a constant Prandtl number, Pr is used.
The solid body is shown as the red surfaces in figures 1 and 2 and is treated as impermeable to fluid flow

and having no-slip. The former condition implies
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,

and the latter condition implies u = 0. Superscript b denotes enforcement at the fluid-body interface. Far-
field boundary conditions are depicted as blue surfaces in the figures and are specified via an assumed infinity
profile, u = U∞. The green surfaces correspond to symmetry planes involving no flow across and no traction
along them.

Heat transfer within the solid body is modeled as a balance of thermal transport governed by the following
equation,

ρC
∂T

∂t
−∇ · (K∇T )− q̇ = 0 (4)

where T is the unknown temperature field within the body, K is a thermal conductivity matrix, and q̇ is a
volumetric source term. For the present work, K is treated as a scalar constant, e.g. K = κ, and the source
term is assumed to be zero. We also limit this work to steady-state conditions. Together, these assumptions
reduce eq.(4) to the Laplace equation governing linear heat conduction within the solid body.

Thermal boundary conditions at the fluid-body interface (red surfaces) represent the coupling between
the fluid and solid domains. Conjugate heat transfer is modeled by requiring temperature and heat flux to
be continuous across the interface:

T b
f = T b

s (5)

qb
f = qb

s , (6)

where subscript f denotes the fluid phase, and subscript s denotes the solid body. Equation (5) represents
a Dirichlet boundary condition, while eq.(6) is of Neumann type.

III. Physics Codes

T
his section briefly describes the two codes Premo and Calore which solve the equations governing com-
pressible viscous fluid flow and heat transfer, respectively. Both codes utilize the Sierra framework2
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for general support of common capabilities such as parsing user input, reading mesh data, preprocessing,
post-processing results, interfacing to linear and nonlinear solvers, managing inter-mesh transfers, message-
passing for distributed parallel execution, dynamic load balancing, and adaptivity. As such Sierra provides
a massively parallel computing environment enabling multi-physics simulations.

Premo is based on a node-centered, edge-based, finite-volume algorithm similar to the formulation in
Haselbacher and Blazek4 and Luo et al.5 More detail can be found in ref.6, 7 Calore is a computational heat
transfer program based on galerkin finite elements that solves a wide variety of both linear and nonlinear
thermal physics models.

The two codes are coupled within the Sierra framework through the boundary conditions of eqs.(5) and
(6). The current state of each code requires eq.(5) to be enforced within Premo as a Dirichlet condition with
values transferred from Calore. Conversely, eq.(6) is enforced by first having Premo compute a heat flux
normal to the solid body at each surface node on the fluid/solid interface, then compute a corresponding set
of convective heat transfer coefficients, and finally transfer these coefficients to Calore for use in its surface
integration along the interface within the context of enforcing Neumann-type boundary conditions using
Galerkin finite elements. Hence, continuity of heat flux across the interface is enforced via the expression:

− κn · ∇T = h
(

T b
s − Tref

)

(7)

where Premo computes the left expression, and then determines values for h using an arbitrary but realistic
value for Tref .

IV. Coupling Strategies

T
he two methods we wish to consider to effect multi-physics code coupling are presented in this section.
Both are intended to find a solution to the following system that is nonlinear in general,

R(W, T ) = (RW,RT ) = 0 (8)

with RW defined by eq.(1) and RT by eq.(4). The values W represent the vector degrees of freedom for
Premo (5 per node in the discretized fluid domain), and T is the dependent scalar field within the solid body
and represent the unknowns for Calore.

A. Loose Coupling

Loose coupling represents the traditional and straightforward approach of coupling a fluids code to a thermal
code across a fluid-solid interface. Several studies have been performed that elucidate issues that must be
addressed to perform this coupling properly.8, 9 From a solver perspective, loose coupling is performed via
successive substitution of results obtained from each code. For our work, we perform loose coupling using
successive substitution of solutions for each physics application (Premo or Calore) each obtained by applying
a Newton method. For the case of beginning the solution process by solving flow (Premo) first, loose coupling
is represented by the following iteration cycle (i.e. W-T cycle):

Do while ‖R(W, T )‖ > ε :

Solve Premo for W: RW(W, T̃ ) = 0 (9)

⇓ W̃ ←W (10)

Solve Calore for T : RT (W̃, T ) = 0 (11)

⇓ T̃ ← T (12)

Evaluate : ‖R(W, T )‖ (13)

where over-tildes indicate values obtained from another application and treated as fixed data during the
solution step shown, and eqs.(10) and (12) represent a transfer of variables to a form needed by the subsequent
physics application. The transfers are handled by the Sierra framework. The norm calculation of eq.(13)
requires re-computation of all physics application residuals using updated variable values. The entire loose
coupling cycle is repeated until some measure of overall convergence is attained, eg eq.(13). Solutions to
eqs.(9) and (11) are obtained using Newton’s method for each problem, eg for Calore’s nonlinear iteration k,

Jk
TT ∆T k = −Rk

T (14)

T k+1 = T k + ∆T (15)
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Iterations are continued until the norm ‖RT ‖ < εT . For our study, the linear problems of eq.(14) were
solved iteratively using a Generalized Minimum Residual iterative method. Because one primary objective
of our coupling strategies involves enabling coupled multi-physics while minimizing additional requirements
on any existing application, we evaluate the Jacobians JTT and JWW numerically using finite-differencing
with coloring of the matrix graphs. This feature is available in the NOX nonlinear solver library.

B. Strong Coupling

We consider strong coupling to encompass methods in which updates to variables from each physics code are
performed together with inter-problem dependencies included in computing an update. Compared to loose
coupling, this approach represents a first-order Newton-based strategy. The Newton-based method requires
only the same problem information as is used in performing loose coupling.

Our strong coupling approach is based on performing nonlinear iterations for the coupled system using a
Newton-based approach that imposes no additional requirements on either physics application than what is
needed for the loose coupling described above. This is achieved by using a Jacobian-free Newton-Krylov10

implementation to effect strong coupling between the two physics codes. The iterative linear solve performed
at each nonlinear iteration requires only the action of the Jacobian on a vector. Within the context of
Newton’s method, the action of the Jacobian on a vector p can be obtained without explicitly forming the
matrix by using a directional derivative, ie

Jp ≈
R(x + εp)−R(x)

ε
(16)

In practice, some form of preconditioning is required and leads to a preconditioned form of the directional
derivative,

JM−1p ≈
R(x + εM−1p)−R(x)

ε
. (17)

with M being a preconditioning matrix. For our present work, we construct M as a block diagonal matrix
consisting of the Jacobians used by each problem in performing loose coupling, i.e.

M =







JWW

JTT






(18)

In keeping with our priority of minimizing requirements for physics codes to participate in a coupled muti-
physics simulation, we fill the blocks of the preconditioning matrix and perform the directional derivatives
all numerically using only residual evaluations. Knowledge of the structure of the Jacobian matrices is
also used with the coloring algorithm for achieving efficient numerical evaluation of the Jacobian blocks via
finite-differences.

V. Results

I
n this section, we provide results for fluid-structural thermal coupling computed using both lose and strong
coupling strategies for external flows over both the circular cylinder and blunt-wedge bodies.

A. Circular Cylinder

The fluid and solid material properties for the circular cylinder geometry are chosen to reflect a somewhat
facile problem in order to ensure converged solutions and thereby allow comparisons between the coupling
solution strategies to be made. Accordingly, the flow is characterized by Re = 374, Ma = 0.3 and Pr = 120.
The far-field flow is represented by U∞ = {ρ, u, v, w, p} = { 1.18 kg/m3, 104 m/s, 0 m/s, 0 m/s, 101325
Pa }. Assuming ideal gas gives T∞ = 300K. The solid circular cylinder has thermal conductivity κ = 401.
A Dirichlet temperature boundary condition T = Tw is imposed on the faces of the circular cylinder at
z = ±0.5. Three cases are considered: Tw = 100, 300 and 500K. Results for the temperature profile on the
cylinder surface as well as in the fluid in the vicinity of the cylinder are shown in figures 3 - 5, respectively.

Noteworthy in figures 3 - 5 are that the temperatures on the fluid/solid interface from the fluid and the
solid temperature solutions agree to within the convergence tolerance as they should according to eq.(5)
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(a) Fluid temperature along plane z = 0 (b) Surface temperature profile.

Figure 3. Temperature profiles for case with Tz=±0.5 = 100.0.

(a) Fluid temperature along plane z = 0 (b) Surface temperature profile.

Figure 4. Temperature profiles for case with Tz=±0.5 = 300.0.

(a) Fluid temperature along plane z = 0 (b) Surface temperature profile.

Figure 5. Temperature profiles for case with Tz=±0.5 = 500.0.
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and that the fluid solutions W differ markedly from those obtained using Premo with either isothermal or
adiabatic conditions applied to the cylinder surface.

Comparison of the solution convergence behavior using loose and strong coupling strategies are shown in
figure 6 and are summarized with total required CPU times in table 1. Included in the figure and table are
results for loose coupling performed by starting the successive substitution using either Premo (W-T cycle)
or Calore (T-W cycle). For loose coupling the number of nonlinear iterations corresponds to cumulative
Premo nonlinear iterations. This choice was made because computational cost is dominated by the Premo
problem compared to the Calore problem which comprises only 4443 degrees of freedom out of a total of
53,643 and is linear. Clearly, the performance of loose coupling depends critically on the order of solves
within each coupling iteration. Strong coupling consistently performs slightly better than loose coupling
(T-W cycle) in terms of total time required for convergence.

Table 1. Comparison of loose coupling and strong coupling for

the circular cylinder geometry.

Coupling Method Coupling Iters∗ Total Time (CPU s)

Tz=±0.5 = 100.0K

Loose (W-T cycle) 10 756

Loose (T-W cycle) 5 429

Strong 9 421

Tz=±0.5 = 300.0K

Loose (W-T cycle) 8 543

Loose (T-W cycle) 3 276

Strong 7 267

Tz=±0.5 = 500.0K

Loose (W-T cycle) 10 750

Loose (T-W cycle) 3 317

Strong 8 299

∗ Total number of coupling iterations. For loose coupling, this is the
number of cycles of successive substitution and differs from the number
of Premo nonlinear iterations reported in figure 6.

B. Blunt-wedge

The blunt-wedge geometry was tailored and meshed to capture a Ma = 3.0 shock. This problem was made
considerably more difficult than the circular cylinder problem by specifying Re = 2.4x105 and Pr = 0.72.
Rather than beginning with uniform initial conditions, we ran Premo with an isothermal temperature of 300K
on the blunt-wedge solid body to obtain a starting solution with the shock qualitatively formed. Coupling to
the solid body was then effected by setting the back face of the body to 400K and all other surfaces except
the fluid/solid interface to have no penetration and slip. The temperature field in the fluid and solid is shown
in figure 7, and convergence behavior is compared in figure 8. For this problem, the quality of convergence
is dramatically different with loose coupling (T-W cycle) behaving about as well as for the easier circular
cylinder problem but with strong coupling exhibiting very poor behavior. Besides more challenging physics,
this problem also manifests a non-overlapping surface mesh at the interface, having a solid surface interface
meshed at twice the refinement level as the fluid mesh on the interface. This mismatch makes the transfer
of variables non-trivial, and the action of the Jacobian performed using directional derivatives now captures
the sensitivity of equations near the interface to the details of how the variable transfers are done. Evidence
that this may be a source of pollution is observed in the sharp upturns in convergence behavior occurring at
nonlinear iterations for which the iterative linear solver failed to achieve the requested linear solve tolerance.
We are currently quantifying this potential source of error.

7 of 10

American Institute of Aeronautics and Astronautics



 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0  5  10  15  20  25  30  35

|| 
R

(W
,T

) 
||

Nonlinear Iter #

Strong
Loose (T-W cycle)
Loose (W-T cycle)

(a) Convergence comparison for case with Tz=±0.5 =
100.0K.
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(b) Convergence comparison for case with Tz=±0.5 =
300.0K.
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(c) Convergence comparison for case with Tz=±0.5 =
500.0K.

Figure 6. Comparison of convergence behavior for loose and strong coupling methods represented as coupled

residual norm ||R(W, T )|| vs number of nonlinear iterations. Note that the number of nonlinear iterations for

loose coupling corresponds to those for the sequence of Premo problems.
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(a) Fluid temperature profile. (b) Surface temperature profile.

Figure 7. Temperature profiles for Blunt-wedge problem.
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Figure 8. Comparison of convergence behavior for loose and strong coupling methods represented as coupled

residual norm ||R(W, T )|| vs number of nonlinear iterations for the Blunt-wedge problem. Note that the number

of nonlinear iterations for loose coupling corresponds to those for the sequence of Premo problems.
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VI. Conclusions

We have performed thermally coupled fluid-structural simulations of compressible external flow over two
different thermally conducting solid bodies. We performed the coupled solves using both loose and strong
strategies while requiring no additional information from either physics code beyond what each already
employs when doing stand-alone solves. Strong coupling performs at least as well as loose coupling for a
relatively mild problem, but encounters significant difficulty in converging a problem involving more diffi-
cult flow with non-conforming meshes at the coupling interface. Current work is aimed at addressing and
rectifying the source of convergence breakdown. Lastly, we note that the the presence of a thermally conduct-
ing body dramatically alters the fluid flow profiles compared to either isothermal or adiabatic idealizations
imposed at the solid body interface.
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