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A Manufactured Solution for Verifying CFD Boundary

Conditions, Part II

Ryan B. Bond∗, Patrick M. Knupp†, and Curtis C. Ober‡
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Order-of-accuracy verification is necessary to ensure that software correctly solves a
given set of equations. One method to verify the order of accuracy of a code is the method
of manufactured solutions. In this study, a manufactured solution has been derived and
implemented that allows verification of not only the Euler, Navier-Stokes, and Reynolds-
Averaged Navier-Stokes (RANS) equation sets, but also some of their associated boundary
conditions (BC’s): slip, no-slip (adiabatic and isothermal), and outflow (subsonic, super-
sonic, and mixed). Order-of-accuracy verification has been performed for the Euler and
Navier-Stokes equations and these BC’s in a compressible computational fluid dynamics
code. All of the results shown are on skewed, non-uniform meshes. RANS results will
be presented in a future paper. The observed order of accuracy was lower than the ex-
pected order of accuracy in two cases. One of these cases resulted in the identification
and correction of a coding mistake in the CHAD gradient correction that was reducing the
observed order of accuracy. This mistake would have been undetectable on a Cartesian
mesh. During the search for the CHAD gradient correction problem, an unrelated coding
mistake was found and corrected. The other case in which the observed order of accuracy
was less than expected was a test of the slip BC; although no specific coding or formulation
mistakes have yet been identified. After the correction of the identified coding mistakes,
all of the aforementioned equation sets and BC’s demonstrated the expected (or at least
acceptable) order of accuracy except the slip condition.

1. Introduction

The purpose of this work is to continue the development of a manufactured solution capable of testing
governing equations and boundary conditions (BC’s) implemented in computational fluid dynamics (CFD)
codes on non-uniform meshes. In order to demonstrate that this manufactured solution is both correct
and useful, we apply it to the verification of Premo,2 a compressible fluid dynamics code developed at
Sandia National Laboratories. Thus, the results in this paper are twofold: first, a manufactured solution for
verification of CFD codes and, second, a verification study of Premo using this manufactured solution.
Ref. 1 contains an earlier version of the manufactured solution used in the present work, a derivation

of this manufactured solution, and results of tests on the Euler equations and some of the related BC’s.
The slip condition and the Euler equations using least squares gradient reconstruction failed to verify to the
expected order. After Ref. 1 was published, two coding mistakes were identified. The mistake that resulted
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in the poor slip results involved the misuse of a unit normal calculation function intended for planar surfaces
only. The mistake that resulted in the poor least squares results involved an indexing mistake in the gradient
calculation function. (Ref. 1 draws some incorrect conclusions regarding the least squares results. This will
be discussed in detail in Section 7.1.) These problems were corrected, and the present work re-tests these
features and extends to options not covered in the previous work.
Although the implementation of the MMS is done for Premo, the derivation respects the needs of general

CFD codes and should be useful for their verification. Premo is a compressible flow code used to determine
aerodynamic performance of arbitrary bodies, and it is built within the SIERRA framework3 to allow multi-
physics coupling (e.g., ablation or aeroelasticity). It is a parallel, unstructured, edge-based, finite-volume
code.
The method of manufactured solutions (MMS) provides order-of-accuracy verification of the implemented

equation sets along with their various BC’s.4,5 Such verification is a rigorous way to ensure that the governing
equations are correctly solved and thus builds confidence in the user community. MMS derives its name from
a solution which is manufactured for the purpose of verifying the code. It is similar to the method of exact
solutions, where discrete solutions on a sequence of uniformly refined meshes are compared to an exact
solution. Manufactured solutions are used where no exact solutions exist or where exact solutions are not
sufficiently general to fully test a code. Unlike an exact solution, a manufactured solution does not actually
need to satisfy the original governing equation set for a given set of initial and boundary conditions. Instead,
the original equation set is modified through the addition of a source term so that the manufactured solution
is an exact solution to the equation set with the additional source term. The exact form of the source term
depends on the particular manufactured solution selected. This form is found by applying the equation
operators to the manufactured solution to obtain an analytic formula for the source. The source term is
then added to the original equation set in order to balance it. If lines for calculating the source term are
added to the code, it can be used to solve the equation set with the additional source term. (The mechanism
for this in Premo is a user-defined source routine.) Then, the discrete solutions produced by the code can
be compared to the manufactured solution in order to determine the discretization error. A comparison of
the discretization error on a series of uniformly refined meshes will either verify that the observed order of
accuracy matches the expected order of accuracy, or it will not. In the latter case it may mean there is a
coding mistake. Other possibilities are discussed in Ref. 4.
The Reynolds-Averaged Navier-Stokes (RANS) equations are given as

∂(ρ)

∂t
+
∂(ρũj)

∂xj
= 0 (1)

∂(ρũi)

∂t
+
∂(ρũiũj + pδij − τij)

∂xj
= 0 (2)

∂(ρẽt)

∂t
+
∂(ρũj ẽt + pũj − ũiτij + qj)

∂xj
= 0, (3)

where the bar over a symbol indicates Reynolds averaging and the tilde over a symbol indicates Favre
averaging. These five transport equations are closed by auxiliary relations for thermodynamic and transport
properties. The definitions for internal energy (e) and total energy (et) are given as

e =
1

γ − 1RT (4)

et = e+
uiui
2

. (5)

The ideal gas law is used for the equation of state:

p = ρRT. (6)
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The above relations reference the ratio of specific heats (γ) and the specific gas constant (R). For air, these

quantities are 1.4 and 287.0 N m
kg K

, respectively.

The viscous stress tensor and heat flux vector are given by:

τij = (µ+ µt)

[(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2
3
δij

∂ũk
∂xk

]
(7)

qi = −(k + kt)
∂T

∂xi
. (8)

The molecular viscosity (µ) is given by Sutherland’s law:

µ

µ0
=

(
T

T0

) 3
2 T0 + S

T + S
; (9)

while the eddy viscosity (µt) is determined by the choice of turbulence model. The molecular and turbulent
thermal conductivities are determined by assuming a constant Prandtl number (Pr) and turbulent Prandtl
number (Prt):

k =
γR

γ − 1
µ

Pr
(10)

kt =
γR

γ − 1
µt
Prt

. (11)

For this work, the Spalart-Allmaras turbulence model6 was used. In compressible form, the single trans-
port equation for the model can be expressed as:

∂(ρν̃)

∂t
+
∂(ρũj ν̃)

∂xj
= D + SP − SD, (12)

where
SP = cb1ρν̃S̃ (13)

SD = cω1fωρ

(
ν̃

d

)2

(14)

D =
1

σ

∂

∂xj

[
(µ+ ρν̃)

∂ν̃

∂xj

]
+
cb2ρ

σ

∂ν̃

∂xj

∂ν̃

∂xj
. (15)

The closure coefficients and auxiliary relations are given by

cb1 = 0.1355

cb2 = 0.622

cν1 = 7.1

σ = 2/3

cω1 =
cb1
κ2
+
1 + cb2
σ

cω2 = 0.3

cω3 = 2

κ = 0.41
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fν1 =
χ3

χ3 + c3ν1

fν2 = 1−
χ

1 + χfν1

fω = g

[
1 + c6ω3

g6 + c2ω3

] 1
6

χ =
ν̃

ν

g = r + cω2

(
r6 − r

)

r =
ν̃

S̃κ2d2

S̃ =
√
2ΩijΩij +

ν̃

κ2d2
fν2.

The eddy viscosity is given by
µt = ρν̃fν1. (16)

(Note that ν̃ is a working variable, not the Favre averaged kinematic viscosity.)
To manufacture a solution to Eq. (1), (2), (3), (12) and their auxiliary relations, analytic forms of six

variables must be defined. These six variables must be independent of one another (e.g., this variable set can
not contain ρ, u, and ρu because the third is simply a product of the first two). The most convenient set of
variables (whether conservative, primitive, characteristic, or a combination of the three) may depend upon
the BC being tested. For this work, the variables p, T , u, v, w, and ν̃ were used. This manufactured solution
may also be used for the Navier-Stokes set or the Euler set by simply dropping the extraneous turbulence
variable.
A general form for a steady manufactured solution of a flow variable φ is

φ = φ0 (1 + f(Ax)f(By)f(Cz)) , (17)

where A, B, and C are constants. The function f must be chosen so that this form satisfies the requirements
of Knupp and Salari.4 To avoid symmetry within the solution, A 6= B 6= C 6= 0. If φ0 is a constant, this
form is a separated solution plus a constant.7 The separated form makes deriving manufactured solutions
with specific Neumann BC’s (such as a vanishing normal derivative) easier. Constant values for φ0 will not
be sufficient for all of the BC’s of interest, but if φ0 is chosen appropriately, the necessary properties will
hold.

2. What Defines a Boundary Condition?

For hyperbolic or mixed character equations, flow of information through the domain and its associated
boundaries is restricted by the local mathematical character (i.e., whether the equations are hyperbolic,
parabolic, or elliptic at a given point, and if they are hyperbolic, the direction of the characteristics). The
concept of information, or small perturbations, propagating into or out of the domain is distinct from the
flux of mass, momentum, or energy through the boundary. The eigenvalues of a system of hyperbolic or
mixed character equations determine the directions in which the information will propagate. For the 3-D
Euler equations, there are five eigenvalues which dictate the flow of information at a bounding surface: one
is the velocity normal to the boundary plus the speed of sound, vn + a; one is the normal velocity minus
the speed of sound, vn − a, and the other three are the normal velocity, vn (i.e., this eigenvalue is repeated
three times).
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Conditions that are enforced on domain boundaries are frequently referred to as BC’s in the engineering

literature, but some do not satisfy the mathematical definition of a BC. A good example is ∂p
∂n
=

ρv2
t

R
which,

although it is enforced on a slip boundary, does not provide any additional constraint to the governing
equation and, therefore, is not a mathematical BC. (See Section 3.1.1 for a more thorough explanation of
this equation and the slip condition.)
The number of mathematical BC’s which need to be enforced at a given boundary segment in order

to determine a unique solution is equal to the number of negative eigenvalues. For the Euler equations
at a supersonic outflow boundary, there are no negative eigenvalues, so no mathematical BC’s need to be
enforced on supersonic segments of the boundary. For a subsonic outflow or slip boundary, there is one
negative eigenvalue; for a subsonic inflow boundary, there are are four, and for a supersonic inflow, there are
five.
Consider a homogeneous differential equation

D (u) = 0 (18)

on a domain Ω and its associated BC’s on the boundary of that domain, ∂Ω. (The following discussion is
simplified by the assumption of starting with a homogeneous equation, but the conclusions apply equally
to a non-homogeneous equation.) For a given manufactured solution, u∗, the source term, S∗ generated by
operation of the differential operator, D, upon u∗ is used to create a new equation which the manufactured
solution satisfies

D (u∗) = S∗. (19)

On the interior of Ω, S∗ corrects for the failure of u∗ to satisfy the homogeneous equation. Since D(u) = 0
is also enforced on ∂Ω, S∗ will also correct for the discrepancy between D(u) and D(u∗) on ∂Ω. However,
S∗ does not correct any discrepancy between u∗ and the mathematical BC’s (the number of which is equal
to the number of negative eigenvalues). Thus if a mathematical BC, B(u) = 0, is enforced on some portion
of ∂Ω, then a boundary source, Q∗ = B(u∗), can be added to correct for the discrepancy between B(u) and
B(u∗). Alternatively, the manufactured solution can be designed so that B(u∗) = 0 on the relevant portions
of the boundary.
If the interior equations implemented in a code are to be tested using the manufactured solution, then

Dirichlet BC’s can be set so that the BC’s enforced by the code are equal to u∗ on ∂Ω. A similar setup can be
used for Neumann BC’s, provided that the implementation allows for spatially varying (and, if appropriate,
temporally varying) values of the partial derivatives of u∗ on ∂Ω. However, if a combination of the interior
equations and a specialized BC is to be verified using the method of manufactured solutions, then u∗ must
satisfy the given specialized BC on the portion of ∂Ω where it is to be enforced.a Note that only the BC’s
by the mathematical definition (constraints corresponding to negative eigenvalues) must be satisfied by the
manufactured solution.b In many codes, the interior equations and BC’s are discretized to different orders
of accuracy. In this case, the observed order will be the minimum of the order of the interior equations and
the BC’s.

3. Solid Surface Boundaries

For testing a code’s capability to handle a solid surface boundary, a surface must first be defined. Let
F = F (x, y, z) be a function from <3 into < such that F = C defines a surface for any constant C. The unit

aThe alternative approach of adding the boundary source, Q∗, where necessary requires additional generality on the part of
the code. If the code does not have the capability for introducing Q∗, then enforcing B(u∗) = 0 is the only option. So that
the manufactured solution can be used with codes with or without this capability, the B(u∗) = 0 approach was chosen for this
work.

bThere is also the possibility of a code-imposed constraint on a boundary that corresponds to neither the mathematical
BC’s or the influence of the interior equations. This situation raises numerous code-specific issues for verification that are not
discussed here.
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normal is defined by

n̂ =
∇F
‖∇F‖ . (20)

A manufactured solution can be constructed so that any variable φ satisfies either a Dirichlet (i.e., φ con-
strained) or Neumann (i.e., ∂φ

∂n
constrained) BC along the surface. So that Eq. (20) will represent the

outward facing normal, the domain of interest is taken to be on the side F − C < 0.

3.1. Conditions on Velocity

The two solid surface conditions discussed in this work are the slip condition (~v · n̂ = 0) and the no-slip
condition (~v = 0). For a no-slip boundary on a domain where the Navier-Stokes equations are being solved,
an additional constraint must be placed upon either the temperature (i.e., Dirichlet BC specifying T ) or the
heat flux (i.e., Neumann BC specifying ∂T

∂n
).

3.1.1. The Slip Condition

The slip condition arises from the impermeability of the solid surface. It states that nothing can be convected
through the surface. This can be expressed as vn = 0, where vn is the velocity component normal to the
surface, or equivalently,

~F · n̂ =



0

pn̂

0


 , (21)

where ~F is the flux hypervector and n̂ is the unit normal vector of the surface. For an Euler flow, this

condition is the actual mathematical BC. The oft quoted ∂p
∂n
=

ρv2
t

R
(where vt is the velocity component

tangent to the surface and R is the surface radius of curvature in the streamwise direction) is a consequence
of the governing equations (in this case, the normal momentum equation). Because of this, it is not necessary
for the manufactured solution to satisfy any constraint on the pressure (or any variable other than vn).
For any surface defined by the equation F = Cs, impermeability implies that

∇F · ~v = Fxu+ Fyv + Fzw = 0. (22)

If analytic forms are chosen for u and v in the definition of the manufactured solution, then w can be defined
as follows to ensure that the slip condition holds on any F -constant surface:

w = −Fxu+ Fyv

Fz
. (23)

This imposes an additional constraint on the function F : Fz 6= 0; ∀(x, y, z) ∈ <3. This can be easily enforced

by defining F (x, y, z) = F̃ (x, y)− z. Thus, the surface F = Cs can be expressed as z = F̃ (x, y)− Cs. With
this surface definition, u and v can be left in the general form of Eq. (17) with no additional constraints.

3.1.2. The No-Slip Condition

The no-slip condition is actually slightly simpler. The following equation for u satisfies u = 0 on the surface
F = Cn-s:

u = (Cn-s − F )u0 [1 + f(Ax)f(By)f(Cz)] . (24)

If v and w are of the same form as u, then the manufactured solution satisfies the no-slip condition for
velocity along F = Cn-s. If, however, w is of the form of Eq. (23), then the manufactured solution will
satisfy the no-slip condition on F = Cn-s as well as the slip condition on any F = Cs where Cs 6= Cn-s.
This is convenient since it allows the same manufactured solution to be used for testing the slip and no-slip
conditions.
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3.2. Additional Boundary Condition for the Navier-Stokes Equation Set

Because of the presence of thermal diffusion, the Navier-Stokes equation set requires the imposition of one
additional BC at a no-slip surface. This BC is most often either a Dirichlet BC (i.e., T specified) or a
Neumann BC (i.e., ∂T

∂n
specified). The Neumann condition can also be expressed by specifying the heat flux.

If Dirichlet and Neumann BC’s are implemented in the code, and they are written very generally (i.e., as
functions of spatial and temporal variables), then the manufactured solution choice for temperature does not
need to satisfy special requirements at the boundary. In this case, the code can just be given the BC that the
manufactured solution already satisfies. It can be expressed as either a Dirichlet or Neumann BC. However,
if the code has a special case, such as uniform temperature (T = Tc) or adiabatic boundary (

∂T
∂n
= 0), then

the manufactured solution must satisfy the special case in order to verify its implementation.

3.2.1. Adiabatic Boundary

The temperature at an adiabatic ( ∂T
∂n
= 0) surface is subject to a Neumann BC. This constraint defines a

partial differential equation (PDE) for T :

∇T · ∇F = FxTx + FyTy + FzTz = 0. (25)

A manufactured solution to T which satisfies this PDE can be used for adiabatic tests. One such solution is
given by Eq. (27) in Section 3.2.3.

3.2.2. Isothermal Boundary

If an isothermal (i.e., constant temperature) BC is implemented as a strict Dirichlet BC, then verification
by the method of manufactured solutions is probably unnecessary. Simple inspection of the output temper-
ature solution at the isothermal boundary should indicate whether or not the condition is applied correctly.
However, in the event that the constant temperature is maintained indirectly through the flux or residual
vector formulations, some formal verification is necessary.
The isothermal boundary is formulated along a surface F = Ci similar to the way that the no-slip

condition on the velocity was formulated. In this case, it is necessary to ensure that T = Tc at F = Ci and
that T has sufficient spatial variation away from the surface. This can be done with the following equation:

T = Tc + (Ci − F )T0 (1 + f(Ax)f(By)f(Cz)) . (26)

3.2.3. Adiabatic and Isothermal

Because much of the work in verification by the method of manufactured solutions is taken up in calculating
the source term and incorporating it into the code, the amount of work can be reduced if the manufactured
solution is designed to test multiple BC’s. If the constraints mentioned in the previous sections are combined,
the following solution is obtained:

T = Tc
(
1 + g(x, y, z)

[
Ca/i − F

]n)
, (27)

where n > 1 and g(x, y, z) ≥ 0. Note that this is a departure from the general form in Eq. (17). The
term

[
Ca/i − F

]n
ensures that T = Tc and

∂T
∂n
= 0 on F = Ca/i. The function g(x, y, z) is necessary in

the event that the function F (x, y, z) does not have enough nonzero partial derivatives to exercise all of the
terms in the equations. For example, if F (x, y, z) = 1

2 cos(2x) cos(3y) − z, then g must be a function of

z so that the leading error terms for the discretization of ∂2T
∂z2

are nontrivial. If g(z) = 1 + 1
4 sin(z), this

condition is satisfied. Alternatively in this case, n could simply be increased until T has sufficient variance in
z, but that has the effect of uniformly raising T , making it more difficult to locate supersonic regions to test
supersonic inflow and outflow conditions. Also, raising n would increase solution gradient components in all

7 of 22

American Institute of Aeronautics and Astronautics Paper 2005-0088



three directions, whereas the addition of g(z) only increases the gradient component in the z direction. High
solution gradients require higher mesh resolution (i.e., bigger meshes and more expensive computations) to
reach the asymptotic regime.

3.3. Turbulence Variable(s) for the RANS Equation Set

For RANS cases, turbulence variable(s) also need to be defined at a solid surface. For the Spalart-Allmaras
model, the following equation can be used

ν̃ = (Cn-s − F ) ν̃0 (1 + f(Ax)f(By)f(Cy)) . (28)

For any of the two-equation models (e.g., k-ε or k-ω), this same formula can be used for k. However, the
definition of the other turbulence variable (ε or ω) may not be zero at the boundary, so a different form must
be used. Something similar to Eq. (26) would be sufficient.

4. Inflow and Outflow Conditions for the Euler Equations

For the Euler equations, the number of incoming and outgoing characteristics at any given inflow or
outflow surface is determined by the signs of the eigenvalues. Since the manufactured solution needs to
match the BC’s, the eigenvalues of the operator D on ∂Ω must conform to the signs dictating which BC’s are
matched (e.g., for an inflow surface, vn < 0, and for an outflow surface, vn > 0). Otherwise, the boundary
can be over- or under-constrained by the BC’s imposed by the code. Each of these surfaces may be either
subsonic (Mn < 1), supersonic (Mn > 1), or a mixture of the two. For example, if a surface is specified as an
outflow surface, a Dirichlet condition on the pressure will be enforced on subsonic portions of the boundary
with the remainder of the variables determined by the interior equations. All of the flow variables will be
determined by the interior equations on a supersonic portion of the boundary. However, if vn < 0 anywhere
on this surface, then the necessary constraints arising from the three additional negative eigenvalues will be
missing, and the problem will be ill-posed.
Since the previously defined function F used for defining the slip and no-slip surfaces can not also be

used for defining an inflow or outflow surface, a new function must be considered. Let G = G(x, y, z) be
a function from <3 into < such that G = C defines a surface for any constant C. The definition of this
function and the value of C are both arbitrary. Once G has been defined, it can be used in the manufactured
solution to ensure that given inflow and outflow conditions hold on G-constant surfaces.

4.1. Subsonic Outflow Condition

Since the previously derived manufactured solutions for u, v, w, and T leave only one degree of freedom
for an Euler solution, an inflow condition (having four or five incoming characteristics, depending on the
Mach number) can not be tested. However, an outflow condition (having one or no incoming characteristics,
depending on the Mach number) can be tested. The pressure profile can be fixed so that it is constant along
a general surface G(x, y, z) = Co. This condition is similar to the isothermal condition at the solid boundary,
so an equation for pressure similar to Eq. (26) can be used.

p = pc + (Co −G) p0 (1 + f(Ax)f(By)f(Cz)) (29)

It is also necessary that vn > 0 and Mn < 1. However, these constraints are not very restrictive, so they can
be combined with the conditions used to define earlier versions of the velocity profiles. Since the solution is
intended to be used for testing all previously mentioned BC’s in addition to the outflow condition, w is still
defined by Eq. (23). The resulting normal velocity is

vn =
~v · ∇G
‖∇G‖ =

(
Gx −Gz

Fx

Fz

)
u+

(
Gy −Gz

Fy

Fz

)
v

‖∇G‖ . (30)
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If each of the two terms in the numerator are greater than zero, then their sum (and thus the normal velocity)

is greater than zero. If A1 = Gx −Gz
Fx

Fz
, A2 = Gy −Gz

Fy

Fz
, B1 =

A1√
A2

1
+A2

2

, and B2 =
A2√
A2

1
+A2

2

, then u and

v can be defined as
u = (Cn-s − F )B1u0 (1 + f(Ax)f(By)f(Cz)) (31)

v = (Cn-s − F )B2v0 (1 + f(Ax)f(By)f(Cz)) . (32)

This guarantees that the surface is an outflow surface (vn > 0) if both (1 + f(Ax)f(By)f(Cz)) and (Cn-s − F )
are positive. The only remaining requirement is that the flow be subsonic, which is true provided u0 and v0
are chosen appropriately. These definitions, however, are more complex than necessary. If the terms B1 and
B2 have sufficient variance in x, y, and z, then u and v can be simplified to

u = (Cn-s − F )B1u0 (33)

v = (Cn-s − F )B2v0. (34)

4.2. Supersonic Outflow

Provided that the u0 and v0 from Eq. (33) and (34) and n and T0 from Eq. (27) are defined appropriately,
there will exist regions where Mn > 1 and regions where Mn < 1. Thus, different regions of the solution can
be used to test implementation of supersonic and subsonic outflow enforcement at the surface G = Co. For
the supersonic case, there is no mathematical BC enforced, so there is no constraint upon p.

5. The Computational Domains

The functions F and G are used to define some of the boundaries of the computational domain. A third
function, H is also needed to construct the domain, although no BC’s are tested on H-constant surfaces (i.e.,
instead of any special BC’s, Dirichlet BC’s are enforced on H). The no-slip surface is the F = 0 surface,
and the exit surface is the G = 0 surface. All other F -constant surfaces are slip surfaces. F , G, and H are
defined as follows:

F =
1

2
cos(Afx) cos(Bfy)− z (35)

G = x− 1
2
cos(Agy) sin(Bgz)−

π

4
(36)

H = −y. (37)

A simple definition of H is permissible since no BC’s will be tested on H-constant surfaces.c The version of
the solution used in this work uses Af =

1
2 , Bf =

3
4 , Ag =

1
4 , and Bg =

1
2 . This represents a reduction in the

wave numbers from Ref. 1 by a factor of four. This was done in an attempt to reduce the mesh resolution
required to reach the asymptotic regime. It is quite helpful if the mesh resolution is sufficient to identify
coding mistakes on coarser meshes. If the observed order of accuracy is poor on coarser meshes, then coding
mistakes can be identified and fixed before much computational time is invested in running MMS cases on
finer meshes. Finer meshes can later be used to confirm the coarse mesh results.
A six-sided domain can be defined by setting maximum and minimum values for F , G, and H. Figures

1, 2, and 3 show the three domains used for testing. In each figure the view on the left shows the volume
mesh, while the view on the right shows the boundaries which were used for BC testing. Figure 1 shows
the domain that was used for testing the slip condition along its Fmax boundary, the supersonic outflow

cThe sufficiency of a simple definition for H depends upon the BC’s being implemented generally in the spatial sense. For
example, if a structured mesh code has six separate implementations of each BC corresponding to the six bounding surfaces of
the computational domain, then each of the six implementations will need to be tested. If this manufactured solution is to be
used for such a case, then several orientations of the computational space (ξ,η,ζ) relative to the F , G, and H surfaces will need
to be used.
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Figure 1. Domain used for testing of slip condition and supersonic outflow.
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Figure 2. Domain used for testing of mixed outflow.

condition along its G = 0 boundary, and the Euler equations on its interior. The domain shown in Figure 2
was used to test a mixed subsonic and supersonic outflow condition along with the Euler equations on the
interior. The domain shown in Figure 3 was used for testing the no-slip condition along its F = 0 boundary,
the subsonic outflow condition along its G = 0 boundary, and both Euler and Navier-Stokes equations on
its interior.

6. The Manufactured Solution

Once F , G, and H are defined, the manufactured solution is defined as follows:

A1 = Gx −Gz

Fx
Fz

(38)
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A2 = Gy −Gz

Fy
Fz

(39)

B1 =
A1√
A2

1 +A2
2

(40)

B2 =
A2√
A2

1 +A2
2

(41)

u =
3

4
(−F )B1asl (42)

v =
3

4
(−F )B2asl (43)

w = −Fxu+ Fyv

Fz
(44)

T = Tsl

(
1 +

1

10
(1 + sin(Atz))

)
F 2 (45)

p = psl −Gpsl (1 + cos(Apx) cos(Bpy)cos(Cpz)) (46)

ν̃ = −F ν̃∞
(
1 +

1

2
cos(Aνx) cos(Bνy) cos(Cνz)

)
, (47)

where:
asl = 340m/s (48)

psl = 101.3kPa (49)

Tsl = 288K (50)

ν̃∞ = 1.95νsl (51)

νsl = 1.464× 10−5m2/s. (52)

The version of the solution used in this work uses Ap =
3
4 , Bp =

1
4 , Cp =

1
2 , At =

1
4 , Aν =

3
4 , Bν =

1
4 , and

Cν =
1
2 . As was the case in the definitions of F and G, this represents a reduction in the wave numbers from

Ref. 1 by a factor of four. Other constants have also changed in order to control the locations of subsonic
and supersonic regions.

11 of 22

American Institute of Aeronautics and Astronautics Paper 2005-0088



7. Testing of Interior Equations

Before any specialized BC is tested, it is a good idea to test the interior equations using only Dirichletd

BC’s. This allows the interior equation set to be verified so that any difference between the expected
and observed orders of accuracy in the BC tests can be rightfully interpreted as a problem with the BC
enforcement, rather than a problem with the interior equation set. However, it is not necessary to verify
every possible optione for the interior equation set before progressing to the BC’s. It is only necessary to
verify the same set of options which will be used in the BC tests.

7.1. The Euler Equations

Ref. 1 showed behavior approaching second-order for the Euler equations with Green-Gauss gradient recon-
struction. However, use of least squares gradient reconstruction produced only first order results. It was
erroneously concluded that this reduction in order was caused by the use of equally-weighted least squares as
opposed to inverse-distance-weighted least squares. Instead, a coding mistake in the least squares gradient
calculation was reducing the observed order. Since prior MMS verification8 showed second-order behavior
for least squares on uniform meshes, an explanation was sought for why first-order behavior was seen on
non-uniform meshes. In fact, the correct explanation was simpler: a coding mistake was introduced in Premo
during a revision between the two verification attempts. Because of this, a regression test was added to the
Premo test suite to prevent future recurrences.f Figures 4 and 5 show the equally-weighted and inverse-
distance-weighted results that were obtained after the coding mistake was fixed. Note that these results
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Figure 4. Convergence order for the Euler equations with equally-weighted least squares.

dIn this case, the term “Dirichlet” is used in its mathematical sense to mean that the value of the dependent variable is
specified at various points along the boundary. In Premo, the Dirichlet option enforces the special case where the dependent
variable is set to a constant along an entire boundary segment. Since the manufactured solution frequently does not fit this
special case, Premo’s user-defined BC option was used to enforce the spatially-varying Dirichlet BC’s.

eExamples of such options would be choice of gradient operator and choice of auxiliary relations such as the equation of state
or transport property definitions. In Ref. 1, both Green-Gauss and least squares gradient operators were tested for the interior
equations, but only Green-Gauss was used for the BC test cases. Although some of the BC’s depend upon being provided an
accurate value for the gradient, their implementation does not change based on how this gradient is calculated. Because of this,
one test of each BC with either of the gradient operators is sufficient, rather than tests with both operators.

fThis brings up an important point for verification of codes in development. Once a particular set of options has been
verified, regression tests must be implemented to prevent code modifications from changing the computational results obtained
with this set of options.
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Figure 5. Convergence order for the Euler equations with inverse-distance-weighted least squares.

were obtained using the manufactured solution given in Ref. 1.
Figures 4 and 5 show the observed order of accuracy of the code for each mesh level. N is the number

of nodes in each of the three mesh dimensions. For mesh refinement via doubling, the observed order of
accuracy is given by the following equation:

observed order =
log

(
‖εN/2‖

‖εN‖

)

log(2)
, (53)

where ε is the error (difference between discrete and exact solutions) for the flow variable of interest, and
‖ε‖ is any norm of that error. The L∞ norms are given for the errors in the flow variables ρ, p, T , u, v,
and w. The L∞ norm is used because it tends to indicate non-convergence at a smaller mesh size than the
L1 or L2 norms. Although no evidence of coding mistakes is shown by either Figure 4 or 5, Figure 4 does
not demonstrate asymptotic behavior in the variable u. This and similar problems from Ref. 1 provided
the motivation necessary for the wave number reduction in the manufactured solution that was used for the
remaining cases in the present work. Figure 5, on the other hand, does appear to be within the asymptotic
regime. Although both equally-weighted and inverse-distance-weighted least squares gradient reconstruction
are formally second-order, the inverse-distance-weighted is more accurate on non-uniform meshes. Thus,
attainment of the asymptotic regime on relatively coarser meshes by the inverse-distance-weighted approach
is exactly what should be expected.

7.2. The Navier-Stokes Equations

MMS verification of the Navier-Stokes equations can be performed more on smaller meshes if values for the
viscous transport properties µ and κ (the viscosity and thermal conductivity) cause the viscous fluxes and
convective fluxes to be of similar magnitude. If the viscous fluxes are significantly smaller than the convective
fluxes, coding mistakes present in viscous momentum or thermal flux calculations may not be observable by
MMS tests except on extremely fine meshes.

Since Sutherland’s law (µ = C1T
1.5

T+C2
) and constant Prandtl number (Pr =

µCp

κ
, where Cp is the specific

heat at constant pressure) were chosen as the options of highest priority for verification, the constants in
Sutherland’s law and the value of the constant Prandtl number were changed to allow the viscous momentum
and thermal fluxes to be large enough that they were significant compared to the convective fluxes. The
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value used for C1 was 100, while a typical value for air is 1.458×10−6. The typical value for air of 110.4 was
used for C2. This effectively raised the viscosity by eight orders of magnitude for the Navier-Stokes tests,
making them highly sensitive to coding mistakes in the viscous flux calculations. A Prandtl number of 1 was
used so that the thermal fluxes would be of the same order of magnitude as the viscous momentum fluxes.
MMS tests using the Navier-Stokes equations revealed the presence of a coding mistake immediately, since

the observed order of accuracy was zero, even on the coarser meshes (finer mesh runs were never completed).
A coding mistake in the CHAD gradient correction9 was found. An unordered error (i.e., one that does not
change with mesh spacing) was present in the implementation. This error did, however, go to zero as the
mesh edges were aligned with the coordinate axes. This characteristic explains why the coding mistake went
undetected in prior work on uniform, Cartesian meshes.8

Once the problem was corrected, tests were performed on the series of meshes using Green-Gauss gradient
reconstruction. Since both Green-Gauss and least squares were verified for the Euler equations, and since
the gradient calculation does not change with the governing equations, only one gradient option needed to
be tested with the Navier-Stokes equations. Figure 6 shows the observed order of convergence of the L∞

norms of the error.
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Figure 6. Convergence order for the L∞ error norms for the Navier-Stokes equations.

The errors norms for ρ and p are nearly equivalent for this case, so their curves lie almost on top of
one another. As can be seen in Figure 6, the convergence orders of the L∞ norms of the error of T , u, v,
and w appear to be approaching second-order, while those of ρ and p appear to be approaching order 1.5.
This is surprising, since nothing other than an integer order should be expected for the chosen discretization
scheme; nor should different orders of convergence be expected for the errors of different variables.
Figure 7 shows that the observed convergence orders of the L1 and L2 norms of the ρ error appear to

be approaching 2. This implies that the production of less than second-order error is limited to a particular
region of the domain. Inspection of the error in p and ρ on the mesh shows it to be concentrated in an area
just above the F = 0 surface. Since the velocity goes to zero as the F = 0 surface is approached, the behavior
in this region represents the incompressible limit. It is quite possible that the use of a compressible algorithm
in this region results in a local reduction of observed order. A future test will be to perform a Navier-Stokes
test on a domain which excludes the extremely low velocity region near the F = 0 surface. Although the
plots do not support a claim of second-order accuracy for this case, the authors do not presently suspect
that a coding mistake is present in the implementation of the governing equations. This is an issue that will
need to be resolved in subsequent work.
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Figure 7. Convergence order for the ρ error norms for the Navier-Stokes equations.

8. Testing of Boundary Conditions

Once a set of governing equations has been verified on the interior of a domain, the same code options
and domain can be used to test a given BC by using it on the appropriate surface instead of the Dirichlet
BC. The BC can only be verified to an order equal to or less than the order observed using the same interior
equation set with Dirichlet BC’s applied. Note that some BC’s in many CFD codes (including Premo)
should be expected to generate first-order error. Whether or not this error remains local to the boundary
or propagates into the interior depends upon the mathematical character at the boundary.10 If first-order
error is generated locally at a boundary and does not propagate into the domain, then it is possible for the
L1 or L2 norms of the error to show second-order convergence when the error calculation is performed over
the entire domain.11 This is only true for the L1 and L2 norms because the boundary nodes compose a
smaller fraction of the total number of nodes as the mesh is refined. On the other hand, if the L∞ norm
is used, or if the calculations for the L1 or L2 norms are restricted to the boundary region generating the
first-order error, then the first-order error should be detected. Because of this, it is sometimes necessary to
look at different error norms over different subsections of the domain to better determine the performance
characteristics of a given BC implementation.
The Euler BC’s testable by the current manufactured solution are the slip condition and outflow condition

with the normal flow subsonic, supersonic, or mixed. The outflow condition implementation was verified
for fully supersonic outflow in Ref. 1. However, problems with the slip condition were observed in Ref. 1
wherever boundaries for interprocessor communication intersected with the slip surface. In that particular
case, a unit normal function valid for planar surfaces was used for the curved slip surface. A new function
was written which was valid for curved surfaces as well. After this new function was properly referenced by
the slip condition implementation, tests were repeated, and the results are shown in Section 8.1. Sections 8.2
and 8.3 show results for the outflow tests on mixed subsonic and supersonic outflow and for fully subsonic
outflow, respectively. The domain for the fully-subsonic case contains a line with ~v = 0 where the outflow
boundary meets the no-slip boundary (although a coupled no-slip and outflow test was not attempted).
However, results for the fully subsonic case on the finest mesh were unavailable at the time this paper was
written.
The Navier-Stokes BC’s testable by the current manufactured solution are the adiabatic and isothermal

no-slip conditions. Results for tests of these cases are shown in Sections 8.4 and 8.5, respectively. For the
isothermal case, results for the finest mesh were unavailable at the time this paper was written.
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8.1. The Slip Condition

Figure 8 shows the observed order of accuracy versus mesh size for the slip condition on hexahedral meshes.
This test was performed with a weakg implementation of the BC. This is based on the error calculation
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Figure 8. Convergence order for the slip condition on hexahedral meshes.

restricted to the slip boundary (as opposed to the entire domain); however, since the locations of the
maximum error are located on the slip boundary, the plots for L∞ norms look the same whether the error is
calculated on the entire domain or restricted to the boundary. Despite the generalization of the unit normal
calculation to handle curved surfaces, something is still preventing the expected order of convergence from
being observed on the slip boundary.
This test was repeated on a series of tetrahedral meshes to determine if the problem could be isolated

to hexahedral meshes. The sequence of tetrahedral meshes was constructed by using all of the nodes in the
hexahedral meshes and adding the edges necessary to subdivide each hexahedron into its six constituent
tetrahedra (this is not a unique decomposition, but which decomposition is chosen is immaterial). The
results are shown in Figure 9.
A first glance at Figure 9 hints that whatever problems are evident on the hexahedral meshes are not

present on the tetrahedral meshes. Some first-order error is expected at this boundary, so the L∞ norm
(or any norm for the error calculation restricted to the slip boundary) should detect some first-order error.
However, the error in p, which is the first variable to exhibit the problem on hexahedral meshes, is below
one and trending downward. The norms of the errors in w, ρ, and u are also trending downward, and none
of these curves appear to be asymptotically approaching a constant value. This is alarming, although the
presence of less than first-order error can not be confirmed on this series of meshes. Since the nodes of
the hexahedral and tetrahedral meshes were collocated, one should not expect the tetrahedral mesh to need
more nodes to detect the same problem, but Figure 9 does not provide clear evidence that the problem seen
on hexahedral meshes is absent from tetrahedral meshes. However, no specific coding mistake has yet been
identified. Whether one exists or whether the problem is with the MMS test itself has not been resolved.
Other simluations have been completed using the slip condition without trouble and have shown reductions
in errors for specific quantities of interest. Although these simulations are not as thorough as the verification
tests performed here, increasing errors with mesh refinement have not been observed outside of the MMS
tests. Further investigation is warranted.

gA weak formulation of a BC is one that is implemented through the definition of a flux at the boundary, as opposed to the
setting of the dependent variable (strong formulation) or modification of the residual vector in the solver (residual formulation).
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Figure 9. Convergence order for the slip condition on tetrahedral meshes.

8.2. Mixed Subsonic and Supersonic Outflow

Results of the test with a mixed subsonic and supersonic outflow BC are shown in Figure 10. This test
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Figure 10. Convergence order for the mixed subsonic & supersonic outflow boundary.

was performed with a weak implementation of the BC. Since this figure shows the L∞ norms with the error
calculation restricted to the exit surface, the second-order results show that the implementation of this BC
in this normal Mach number regime does not generate any first-order error. Since there is no first-order error
generated, there is no need to examine whether such error, if it existed, would propagate into the interior.
Note that if this test case had been performed before the fully-supersonic case in Ref. 1, it would have
rendered a fully-supersonic case unnecessary for Premo because a single outflow condition handles all Mach
numbers, and this test verified it for both subsonic and supersonic outflow. However, the manufactured
solution was designed to also be used for codes that may not be as general. Additionally, in the event that
mixed outflow results had revealed problems, the fully subsonic and fully supersonic regions could have been

17 of 22

American Institute of Aeronautics and Astronautics Paper 2005-0088



used to isolate the potential coding mistake.h

8.3. Fully Subsonic Outflow

Although the mixed subsonic and supersonic outflow test confirmed that a subsonic outflow boundary would
not generate anything less than second-order error, another test was performed with a fully subsonic boundary
to examine what would happen when ~v = 0. The domain chosen (see Figure 3) has ~v = 0 along the bottom
edge of the boundary and vn > 0 elsewhere. Although this edge is the intersection of the outflow (G = 0)
and no-slip (F = 0) boundaries, this test was performed with Dirichlet BC’s applied at F = 0, rather than
the no-slip BC.
Figure 11 shows the observed order of convergence for all of the norms of the w error. This test was
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Figure 11. Convergence order for fully subsonic outflow with a ~v = 0 line.

performed with a weak implementation of the BC. Error calculations for this plot were performed over the
entire domain, but the plot that results from the error calculation being restricted to the exit surface is
almost identical. These norms are similar to the norms of the u error, but all of the other variables have
their L∞ norms tending toward 2. Although results for the N = 129 case were not available, it appears that
there is some error of less than second-order being generated in the ~v ≈ 0 region. Since the L1 and L2 norms
do not detect this error, and since the results with the error calculation performed over the entire volume
and restricted to the exit surface give similar results, it does not appear that the error generated in this
region is propagated to other areas of the domain in detectable quantities. However, the lack of fine mesh
results for this case means that this property can not be established with certainty.

8.4. Adiabatic No-Slip Boundary

The no-slip condition enforces ~v = 0 by modifying the residual vector at each iteration, so the error in the
variables u, v, and w should be zero at the wall for an iteratively converged solution. This is known as a
residual enforcement of the BC. The errors of the other variables can be calculated at the wall, and Figure
12 shows their norms.

hIt is also worth noting that the subsonic portions of the boundary were expected to generate some first-order error, whereas
the supersonic portions were expected to verify to second-order. If this had turned out to be the case, then the fully supersonic
case would have been useful in demonstrating a higher observed order than the mixed outflow test. The authors presently
believe that their initial assessment of the error structure on subsonic portions of an outflow boundary was incorrect, although
this has not yet been proven with a re-derivation of the expected order.
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Figure 12. Convergence order for the adiabatic no-slip condition with error calculation restricted to the wall.

Figure 12 does indicate some first-order error is being generated in the ρ and p variables. This is expected,
given the implementation of this BC. To determine whether this error propagates into the interior, the L2

norm of the error of all of the variables was plotted, and this plot is shown in Figure 13.
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Figure 13. Convergence order for the adiabatic no-slip condition with error calculation performed over the

entire domain.

Figure 13 shows the L2 norms of the errors of all variables to be above 1.5 and converging toward 2. This
indicates that the error generated at the surface is not propagating into the interior in measurable quantities.

8.5. Isothermal No-Slip Boundary

Results of the isothermal option for the no-slip condition are similar. In this case, the residual enforcement
specifies a constant value of T as well as u, v, and w, so the only non-zero error on the wall is in the p and
ρ variables. The L∞ norms of these errors are given in Figure 14.
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Figure 14. Convergence order for the isothermal no-slip condition with error calculation restricted to the wall.

In this case, the convergence orders for the p and ρ errors are close enough to being equal that the lines
lie on top of one another. As was the case for the adiabatic no-slip, first-order error in ρ and p is generated
at the wall, but this error does not appear to propagate into the interior (Figure 15). These results are not
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Figure 15. Convergence order for the isothermal no-slip condition with error calculation performed over the

entire domain.

entirely conclusive because the N = 129 mesh results were unavailable at the time this paper was written.

9. Conclusions

A manufactured solution was derived that is capable of testing the Euler, Navier-Stokes, and RANS
equations on non-uniform meshes along with the slip and no-slip (adiabatic and isothermal) conditions and
outflow (subsonic, supersonic, and mixed) boundary. Follow-up tests confirmed that a previously identified
problem with least squares gradient reconstruction has been corrected and that the Euler equations are
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solved to second-order for all gradient reconstruction options. The results of tests with the Navier-Stokes
equations using Dirichlet BC’s initially revealed a coding mistake, but after that mistake was corrected, no
further evidence of mistakes was found, and the Navier-Stokes equations appear to be solved to at least order
1.5. The coding mistake identified would not have been found using Cartesian meshes.
The expected order of accuracy was not observed during tests of the slip condition, despite the correction

of a previously identified coding mistake. It has not been determined whether an additional coding mistake
is present or whether a problem with the MMS test exists. All other BC’s exhibited at least the expected
order of accuracy, indicating correct implementations. The outflow boundary implementation was verified
to second-order wherever the flow was actually outward (vn > 0), but wherever the flow was stagnant
(~v ≈ 0), lower-order error was generated. Both the adiabatic and isothermal versions of the no-slip condition
implementation generated some first-order error (this was expected). All of the first-order error generated
at these boundaries did not propagate into the interior in measurable quantities; however, some of the cases
with first-order error present on the boundary did not have fine mesh results to conclusively demonstrate
this property of non-propagation. Table 1 gives a summary of results from this work and Ref. 1.

Table 1. Summary of results from present work and Ref. 1

.

lowest order lowest order

test for L2 norm for L∞ norm

Euler w/ Green-Gauss 2 2

Euler w/ equally-weighted least squares 2 2

Euler w/ inverse-distance-weighted least squares 2 2

Navier-Stokes 2 1.5

slip condition unordered unordered

adiabatic no-slip condition 2 1

isothermal no-slip condition 2 1

outflow for vn > 0 2 2

outflow for ~v ≈ 0 2 ?

This work underscores the primary advantage of using skewed, non-uniform meshes for MMS verification:
some coding mistakes will be missed if MMS testing is only performed on uniform, Cartesian meshes. This
work also addresses the primary challenge of using skewed, non-uniform meshes for MMS verification: finer
meshes may be necessary to reach the asymptotic regime than what would be expected for uniform, Cartesian
meshes. The current work showed that decreasing the wave numbers in the sinusoidal functions used to
generate the manufactured solution makes the asymptotic regime easier to attain, so future work may
involve a further reduction in these wave numbers.i Another potential area for improvement is the use
of inversely-weighted least squares gradient reconstruction for cases which are not specifically intended to
test one of the other gradient options. Since this is the most accurate method of calculating the gradient
on skewed, non-uniform meshes, it should allow the asymptotic regime to be reached on relatively coarser
meshes. Two major objectives of the third and final phase of this work will be to demonstrate attainment
of the asymptotic regime on reasonably-sized meshes and to verify the RANS governing equations.
This work demonstrated the value of using the method of manufactured solutions for verifying the BC’s

of CFD codes. The derived manufactured solution is applicable not only to Premo, but also to general CFD
codes.

iAll of the cases for which no coding mistakes were indicated were in the asymptotic regime by the last two mesh levels for
the current version of the manufactured solution. This was not the case for the previous version1 of the manufactured solution.
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