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A Manufactured Solution for Verifying CFD

Boundary Conditions

Ryan B. Bond∗, Patrick M. Knupp†, and Curtis C. Ober‡

Sandia National Laboratories§

P. O. Box 5800
Albuquerque, NM 87185

Formal order of accuracy verification is necessary to ensure that software correctly
and accurately solves a given set of equations. A manufactured solution has been derived
and implemented that allows verification of not only the Euler, laminar Navier-Stokes,
and Reynolds-Averaged Navier-Stokes (RANS) equation sets, but also some of their asso-
ciated boundary conditions (BC’s): slip, no-slip (adiabatic and isothermal), and outflow
(subsonic and supersonic). Tests have been completed for the Euler equation set with
both Green-Gauss and least-squares gradient reconstruction as well as the slip and super-
sonic outflow BC’s. All tests were performed on non-uniform, hexahedral meshes. The
Euler equations with Green-Gauss gradient reconstruction verified to second-order, as did
the supersonic outflow BC. The Euler equations with least-squares gradient reconstruc-
tion using equal weighting verified only to first-order, but future tests will be performed
with inverse distance weighting since unweighted least-squares on non-uniform meshes
has been previously documented as having inaccuracies. The results of the slip BC tests
identified a problem associated with the slip BC and the parallel decomposition of the
domain. These initial tests demonstrated the ability of the method of manufactured
solutions (MMS) to provide order verification of specialized CFD boundary conditions.

Introduction

The purpose of this work is to derive and implement
a manufactured solution capable of testing computa-
tional fluid dynamics (CFD) codes’ governing equation
sets and boundary conditions on non-uniform meshes.
Although the implementation is done for Premo,1 the
derivation respects the needs of general CFD codes
and should be useful for their verification. Premo is
a compressible flow code used to determine aerody-
namic performance of arbitrary bodies, and it is built
within the SIERRA framework2 to allow multi-physics
coupling (e.g., ablation and aeroelasticity). It is a par-
allel, unstructured, edge-based, finite-volume code.

The method of manufactured solutions (MMS) pro-
vides formal order-of-accuracy verification of the im-
plemented equation sets along with their various
boundary conditions. Such verification is needed to
ensure the correctness and accuracy of the software
and to build confidence within the community of users.
MMS derives its name from a solution which is man-
ufactured for the purpose of verifying the code. It is
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similar to the method of exact solutions, where dis-
crete solutions on a sequence of systematically refined
meshes are compared to an exact solution. Manufac-
tured solutions are used where no exact solutions exist
or where exact solutions are not sufficiently general to
fully test a code. A manufactured solution does not
actually need to satisfy the original governing equation
set. Instead, the equation set is modified through the
addition of a source term so that the manufactured
solution is an exact solution to the modified equation
set. The exact form of the source term depends on
the particular manufactured solution selected. This
form is found by applying the equation operators to
the manufactured solution to obtain an analytic for-
mula for the source. The source term is then added to
the original equation set in order to balance it. If lines
for calculating the source term are added to the code,
it can be used to solve the modified equation set in-
stead of the original equation set. (The mechanism for
this in Premo is a user-defined source routine.) Then,
the discrete solutions produced by the code can be
compared to the exact manufactured solution in order
to determine the discretization error. A comparison of
the discretization error on a series of systematically re-
fined meshes will either verify that the observed order
of accuracy matches the expected order of accuracy, or
it will indicate that the observed order of accuracy lags
the expected order of accuracy. The latter generally
means that a bug in the code is reducing the observed
order of accuracy, although it could also indicate that
the expected order of accuracy is unattainable with
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the chosen formulation (bugs or no bugs) because the
expected order was derived incorrectly.
The Reynolds-Averaged Navier-Stokes (RANS)

equations are given as

∂(ρ)

∂t
+
∂(ρũj)

∂xj
= 0 (1)

∂(ρũi)

∂t
+
∂(ρũiũj + pδij − τij)

∂xj
= 0 (2)

∂(ρẽt)

∂t
+
∂(ρũj ẽt + pũj − ũiτij + qj)

∂xj
= 0, (3)

where the bar over a symbol indicates Reynolds av-
eraging and the tilde over a symbol indicates Favre
averaging. These five transport equations are closed
by auxiliary relations for thermodynamic and trans-
port properties. The definitions for internal energy
(e) and total energy (et) are given as

e =
1

γ − 1RT (4)

et = e+
uiui
2

. (5)

The ideal gas law is used for the equation of state:

p = ρRT. (6)

The above relations reference the ratio of specific heats
(γ) and the specific gas constant (R). For air, values

for these quantities are 1.4 and 287.0 N m
kg K

, respec-

tively.
The viscous stress tensor and heat flux vector are

given by:

τij = (µ+ µt)

[(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2
3
δij

∂ũk
∂xk

]
(7)

qi = −(k + kt)
∂T

∂xi
. (8)

The molecular viscosity (µ) is given by Sutherland’s
law:

µ

µ0
=

(
T

T0

) 3
2 T0 + S

T + S
; (9)

while the eddy viscosity (µt) is determined by the
choice of turbulence model. The molecular and tur-
bulent thermal conductivities are determined by as-
suming a constant Prandtl number (Pr) and turbulent
Prandtl number (Prt):

k =
γR

γ − 1
µ

Pr
(10)

kt =
γR

γ − 1
µt
Prt

(11)

For this work, the Spalart-Allmaras turbulence
model3 was used. In compressible form, the single
transport equation for the model can be expressed as:

∂(ρν̃)

∂t
+
∂(ρũj ν̃)

∂xj
= D + SP − SD, (12)

where
SP = cb1ρν̃S̃ (13)

SD = cω1fωρ

(
ν̃

d

)2

(14)

D =
1

σ

∂

∂xj

[
(µ+ ρν̃)

∂ν̃

∂xj

]
+
cb2ρ

σ

∂ν̃

∂xj

∂ν̃

∂xj
. (15)

The closure coefficients and auxiliary relations are
given by

cb1 = 0.1355

cb2 = 0.622

cν1 = 7.1

σ = 2/3

cω1 =
cb1
κ2
+
1 + cb2
σ

cω2 = 0.3

cω3 = 2

κ = 0.41

fν1 =
χ3

χ3 + c3ν1

fν2 = 1−
χ

1 + χfν1

fω = g

[
1 + c6ω3

g6 + c2ω3

] 1
6

χ =
ν̃

ν

g = r + cω2

(
r6 − r

)

r =
ν̃

S̃κ2d2

S̃ =
√
2ΩijΩij +

ν̃

κ2d2
fν2.

The eddy viscosity is given by

µt = ρν̃fν1. (16)

(Note that ν̃ is a working variable, not the Favre av-
eraged kinematic viscosity.)
To manufacture a solution to Eq. (1), (2), (3), (12)

and their auxiliary relations, analytic forms of six vari-
ables must be defined. These six variables must be
independent of one another (e.g., this variable set can
not contain ρ, u, and ρu because the third is simply
a product of the first two). The most convenient set

2
American Institute of Aeronautics and Astronautics



of variables (whether conservative, primitive, charac-
teristic, or a combination of the three) may depend
upon the boundary condition being tested. For this
work, the variables p, T , u, v, w, and ν̃ were used.
This manufactured solution may also be used for the
laminar Navier-Stokes set or the Euler set by simply
dropping the extraneous turbulence variable.
A general form for a steady manufactured solution

of a flow variable φ is

φ = φ0 (1 + f(Ax)f(By)f(Cz)) , (17)

where A, B, and C are constants. The function f must
be chosen so that this form satisfies the requirements
of Knupp and Salari.4 To prevent symmetry within
the solution, A 6= B 6= C 6= 0. This form is useful
in testing boundary conditions because it is a sepa-
rated solution plus a constant.5 The separated form
makes deriving manufactured solutions with specific
Neumann boundary conditions (such as a vanishing
normal derivative) easier. This particular form is not
sufficient for all of the boundary conditions of inter-
est, but it provides a prototype which can be modified
when necessary.

“Physical” versus “Numerical”
Boundary Conditions

For hyperbolic or mixed character equations, flow
of information through the domain and its associ-
ated boundaries is restricted by the local mathematical
character (i.e., whether the equations are hyperbolic,
parabolic, or elliptic at a given point, and if they are
hyperbolic, the orientation of the characteristics). The
concept of information, or small perturbations, prop-
agating into or out of the domain is distinct from
the flux of mass, momentum, or energy through the
boundary. Conditions enforced on the boundaries of
the domain are often categorized as “physical” or “nu-
merical” boundary conditions.6 The term “physical
boundary condition” refers to a condition which is
imposed on the solution at the boundary as a conse-
quence of information propagating into the interior of
the domain from the boundary. The term “numerical
boundary condition” refers to a condition which holds
true at the boundary as a consequence of information
propagating to the boundary from the interior of the
domain. The eigenvalues of a system of hyperbolic or
mixed character equations determine the directions in
which the information will propagate. For the 3-D Eu-
ler equations, there are five eigenvalues which dictate
the flow of information at a bounding surface: one is
the velocity normal to the boundary plus the speed of
sound, vn + a; one is the normal velocity minus the
speed of sound, vn − a, and the other three are the
normal velocity, vn (this eigenvalue is repeated three
times). The number of “physical boundary conditions”
is equal to the number of negative eigenvalues. For

a supersonic outflow condition, there are no negative
eigenvalues; for a subsonic outflow or slip boundary,
there is one; for a subsonic inflow, there are are four,
and for a supersonic inflow, there are five.

It is important to remember, however, that “numer-
ical boundary conditions” are not really boundary con-
ditions at all in the mathematical sense. Instead, they
are consequences of the governing equation set which
hold as the boundary is approached from the interior.
From an implementation standpoint, this distinction
is usually lost, but setting boundary data according to
“numerical boundary conditions” is just a special way
of solving the governing equations at the boundary, not
a way of imposing an additional constraint on the solu-
tion. An example would be the switch from a central
to a one-sided difference for calculating a derivative
at a boundary. This requires a portion of code only
accessed for a boundary node/cell, but this special-
ized portion of code is not, in the mathematical sense,
enforcing a boundary condition. On the other hand,
“physical boundary conditions” are boundary condi-
tions in the mathematical sense. As such, they can be
expressed as Dirichlet, Neumann, or Robin boundary
conditions (or their higher-order cousins). However,
such an expression may not always be in the most
convenient variable definition (e.g., characteristic vari-
ables). The terms “physical boundary condition” and
“numerical boundary condition” arise from a software
engineering approach to CFD and reflect the need for
specialized portions of code for enforcing the boundary
conditions and governing equations on domain bound-
aries. Unfortunately, these terms are misleading from
a mathematical perspective. For clarity in the remain-
der of this paper, “physical boundary conditions” will
simply be referred to as “boundary conditions” since
the existing mathematical definition of this phrase is
sufficient. References to “numerical boundary condi-
tions” will hereafter be avoided except when absolutely
necessary for clarity.

In the method of manufactured solutions, source
term values on the interior and boundary are derived
from the manufactured solution. This source term
is produced via operation on the manufactured solu-
tion by the governing equation set. The source term
then balances the system and makes the manufac-
tured solution satisfy the modified equation set. At
the boundary, operating on the manufactured solution
with the governing equation set produces a source term
which corrects for the local violation of the govern-
ing equation set by the manufactured solution (i.e.,
any “numerical boundary conditions”), but not for
any violation of the boundary conditions. If the man-
ufactured solution satisfies the boundary conditions,
then the source term generated by operating on the
manufactured solution with the governing equations is
sufficient to balance the equation. If the manufactured
solution does not satisfy the boundary conditions, then
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an additional boundary source (or flux) must be added
locally to balance the equations at the boundary. The
local boundary source can be calculated in the same
fashion as the global MMS source if the boundary con-
dition is expressed as an operator. If the boundary
condition is expressed as a flux, then a secondary flux
can be added which corrects for the boundary condi-
tion violation.
In many CFD codes, the interior source term is eval-

uated for all of the cells, including the boundary cells,
but there is no special source term applied only at the
boundary. For such codes, the manufactured solution
needs to satisfy the boundary conditions. However, it
is not necessary that the manufactured solution satisfy
the governing equation set at the boundary (i.e., any
“numerical boundary conditions”). This is because
any violation of the governing equation set by the man-
ufactured solution will be corrected by the source term
at the boundary, just as violations are corrected by the
source term in the interior. The order of accuracy ob-
served during testing with the manufactured solution
will then be the minimum of the following:

1. on the interior, the order at which the solution to
the discrete equation set converges to the solution
to the continuum equation set,

2. on the boundary, the order at which the solution
to the discrete equation set converges to the solu-
tion to the continuum equation set, and

3. the order at which the discrete enforcement of the
boundary conditions (i.e., what the code actually
does) converges to the exact enforcement of the
boundary conditions (i.e., what the code is in-
tended to approximate).

Note that item 2 is tested regardless of whether a “nu-
merical boundary condition” is imposed by the code or
whether the boundary discretization allows integration
of the interior equations all the way to the boundary.
The implementation of the code does not need to be
considered in the design of the manufactured solution.

Solid Surface Boundary Conditions
For testing a solid surface condition, a surface must

first be defined. Let F = F (x, y, z) be a function from
<3 into < such that F = C defines a surface for any
constant C. The normal to this surface is defined by

n̂ =
∇F
‖∇F‖ . (18)

The manufactured solution can be constructed so that
any variable φ satisfies either a Dirichlet (i.e., φ con-
strained) or Neumann (i.e., ∂φ∂n constrained) boundary
condition along the surface. So that Eq. (18) will
represent the outward facing normal, the domain of
interest is taken to be on the side F − C < 0.

Conditions on Velocity

The two solid surface conditions discussed in this
work are the slip condition (~v · n̂ = 0) and the no-
slip condition (~v = 0). Realistically, all solid surfaces
for Euler flows are slip surfaces and all solid surfaces
for continuum Navier-Stokes flows are no-slip surfaces,
but practically speaking, it is frequently permissible
and convenient to couple the slip condition with the
Navier-Stokes equations. This is sometimes done for
a surface which is far away from the region of inter-
est (such as walls in a wind tunnel). It is also done
when a boundary is defined along a stream surface
rather than a solid surface. Because of this, the terms
slip and no-slip are used in this paper to refer to the
conditions imposed upon velocity only. Whether other
boundary conditions need to be imposed depends upon
the governing equation set. Thus, for an Euler flow,
the only possible solid surface condition is the slip;
whereas for a single species Navier-Stokes flow, the
surface boundary condition is the velocity condition
plus any remaining boundary conditions correspond-
ing to incoming characteristic information.

The Slip Condition

The slip condition arises from the impermeability of
the solid surface. It states that nothing can be con-
vected through the surface. This can be expressed as
vn = 0, where vn is the velocity component normal to
the surface, or equivalently,

~F · n̂ =



0
pn̂
0


 , (19)

where ~F is the flux hypervector and n̂ is the unit nor-
mal vector of the surface. For an Euler flow, this
condition is the actual boundary condition. The oft

quoted ∂p
∂n =

ρv2
t

R (where vt is the velocity component
tangent to the surface and R is the surface radius of
curvature) is a consequence of the governing equations
(in this case, the normal momentum equation). Be-
cause of this, it is not necessary for the manufactured
solution to satisfy any condition on the pressure (or
any variable other than vn) because any discrepancies
will be corrected by the source term.
For any surface defined by the equation F = Cs,

impermeability implies that

∇F · ~v = Fxu+ Fyv + Fzw = 0. (20)

If analytic forms are chosen for u and v in the definition
of the manufactured solution, then w can be defined
as follows to ensure that the slip condition holds on
any F -constant surface:

w = −Fxu+ Fyv

Fz
. (21)

This imposes an additional constraint on the function
F : Fz 6= 0; ∀(x, y, z) ∈ <3. This can be easily enforced
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by defining F (x, y, z) = F̃ (x, y)− z. Thus, the surface
F = Cs can be expressed as z = F̃ (x, y)−Cs. With this
surface definition, u and v can be left in the general
form of Eq. (17) with no additional constraints.

The No-Slip Condition

The no-slip condition is actually slightly simpler, al-
though a slight deviation from the form given in Eq.
(17) is necessary. The following equation for u satisfies
u = 0 on the surface F = Cn-s:

u = (Cn-s − F )u0 [1 + f(Ax)f(By)f(Cz)] . (22)

If v and w are of the same form as u, then the man-
ufactured solution satisfies the no-slip condition for
velocity along F = Cn-s. If, however, w is of the form
of Eq. (21), then the manufactured solution will satisfy
the no-slip condition on F = Cn-s as well as the slip
condition on any F = Cs where Cs 6= Cn-s. This is con-
venient since it allows the same manufactured solution
to be used for testing the slip and no-slip conditions.

Additional Boundary Condition for the
Navier-Stokes Equation Set

Because of the presence of thermal diffusion, the
Navier-Stokes equation set requires the imposition of
one additional boundary condition at a no-slip sur-
face. This boundary condition is most often either
a Dirichlet boundary condition (i.e., T specified) or a
Neumann boundary condition (i.e., ∂T∂n specified). The
Neumann condition can also be expressed by specify-
ing the heat flux. If Dirichlet and Neumann boundary
conditions are implemented in the code, and they are
written very generally (i.e., as functions of spatial and
temporal variables), then the manufactured solution
choice for temperature does not need to satisfy spe-
cial requirements at the boundary. In this case, the
code can just be given the boundary condition that
the manufactured solution already satisfies. It can be
expressed as either a Dirichlet or Neumann boundary
condition. However, if the code has a special case, such
as uniform temperature (T = Tc) or adiabatic bound-
ary (∂T∂n = 0), then the manufactured solution must
satisfy the special case in order to verify its implemen-
tation.

Adiabatic Boundary

The temperature at an adiabatic ( ∂T∂n = 0) surface
is subject to a Neumann boundary condition. This
constraint defines a partial differential equation (PDE)
for T :

∇T · ∇F = FxTx + FyTy + FzTz = 0. (23)

A manufactured solution to T which satisfies this PDE
can be used for adiabatic tests. One such solution is
given in a later section.

Isothermal Boundary

If an isothermal (i.e., constant temperature) bound-
ary condition is implemented as a strict Dirichlet
boundary condition, then verification by the method of
manufactured solutions is probably unnecessary. Sim-
ple inspection of the boundary values should indicate
whether or not the condition is applied correctly. How-
ever, in the event that the constant temperature is
maintained indirectly through the flux or residual vec-
tor formulations, some formal verification is necessary.
The isothermal boundary is formulated along a sur-

face F = Ci similar to the way that the no-slip condi-
tion on the velocity was formulated. In this case, it is
necessary to ensure that T = Tc at F = Ci and that T
has sufficient spatial variation away from the surface.
This can be done with the following equation:

T = Tc + (Ci − F )T0 (1 + f(Ax)f(By)f(Cz)) . (24)

Adiabatic and Isothermal

Because much of the work in verification by the
method of manufactured solutions is taken up in cal-
culating the source term and incorporating it into the
code, the amount of work can be reduced if the manu-
factured solution is designed to test multiple boundary
conditions. If the constraints mentioned in the previ-
ous sections are combined, the following solution is
obtained:

T = Tc
(
1 + g(x, y, z)

[
Ca/i − F

]n)
, (25)

where n > 1 and g(x, y, z) ≥ 0. Note that this is
a departure from the general form in Eq. (17). The
term

[
Ca/i − F

]n
ensures that T = Tc and

∂T
∂n = 0

on F = Ca/i. The function g(x, y, z) is necessary
in the event that the function F (x, y, z) does not
have enough nonzero partial derivatives to exercise
all of the terms in the equations. For example, if
F (x, y, z) = 1

2 cos(2x) cos(3y) − z, then g must be a
function of z so that the leading error terms for the dis-

cretization of ∂
2T
∂z2 are nontrivial. If g(z) = 1+

1
4 sin(z),

this condition is satisfied. Alternatively in this case, n
could simply be increased until T has sufficient vari-
ance in z, but that has the effect of uniformly raising
T , making it more difficult to locate supersonic regions
to test supersonic inflow and outflow conditions. Also,
raising n would increase solution gradient components
in all three directions, whereas the addition of g(z)
only increases the gradient component in the z direc-
tion. High solution gradients require more resolution
(i.e., bigger meshes and more expensive computations)
to reach the asymptotic regime.

Turbulence Variable(s) for the
RANS Equation Set

The turbulence variable(s) also need to be defined
at a solid surface. For the Spalart-Allmaras model, the
following equation can be used

ν̃ = (Cn-s − F ) ν̃0 (1 + f(Ax)f(By)f(Cy)) . (26)
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For any of the two-equation models (e.g., k-ε or k-
ω), this same formula can be used for k. However,
the definition of the other turbulence variable (ε or ω)
may not be zero at the boundary, so a different form
must be used. Something similar to Eq. (24) would be
sufficient.

Inflow and Outflow Conditions
for the Euler Equations

For the Euler equations, the number of incoming and
outgoing characteristics at any given inflow or outflow
surface is determined by the signs of the eigenvalues.
Since the manufactured solution needs to match the
boundary conditions, the eigenvalues must also con-
form to the signs dictating which boundary conditions
are matched (for an inflow surface, vn < 0, and for an
outflow surface, vn > 0). Each of these surfaces may
be either subsonic (Mn < 1), supersonic (Mn > 1),
or a mixture of the two. Since the previously defined
function F used for defining the slip and no-slip sur-
faces can not also be used for defining an inflow or
outflow surface, a new function must be considered.
Let G = G(x, y, z) be a function from <3 into < such
that G = C defines a surface for any constant C. The
definition of this function and the value of C are both
arbitrary. Once G has been defined, it can be used in
the manufactured solution to ensure that given inflow
and outflow conditions hold on G-constant surfaces.

Subsonic Outflow Condition

Since the previously derived manufactured solutions
for u, v, w, and T leave only one degree of free-
dom for an Euler solution, an inflow condition (having
four or five incoming characteristics, depending on the
Mach number) can not be tested. However, an outflow
condition (having one or no incoming characteristics,
depending on the Mach number) can be tested. The
pressure profile can be fixed so that it is constant along
a general surface G(x, y, z) = Co. This condition is
similar to the isothermal condition at the solid bound-
ary, so an equation for pressure similar to Eq. (24) can
be used.

p = pc + (Co −G) p0 (1 + f(Ax)f(By)f(Cz)) (27)

It is also necessary that vn > 0 andMn < 1. However,
these conditions are not very restrictive, so they can
be combined with the conditions used to define ear-
lier versions of the velocity profiles. Since the solution
is intended to be used for testing all previously men-
tioned BC’s in addition to the outflow condition, w is
still defined by Eq. (21). The resulting normal velocity
is

vn =
~v · ∇G
‖∇G‖ =

(
Gx −Gz

Fx

Fz

)
u+

(
Gy −Gz

Fy

Fz

)
v

‖∇G‖ .

(28)

If each of the two terms in the numerator are greater
than zero, then their sum (and thus the normal ve-
locity) is greater than zero. If A1 = Gx − Gz

Fx

Fz
,

A2 = Gy −Gz
Fy

Fz
, B1 =

A1√
A2

1
+A2

2

, and B2 =
A2√
A2

1
+A2

2

,

then u and v can be defined as

u = (Cn-s − F )B1u0 (1 + f(Ax)f(By)f(Cz)) (29)

v = (Cn-s − F )B2v0 (1 + f(Ax)f(By)f(Cz)) . (30)

This guarantees that the surface is an outflow sur-
face (vn > 0) if both (1 + f(Ax)f(By)f(Cz)) and
(Cn-s − F ) are positive. The only remaining require-
ment is that the flow be subsonic, which is true pro-
vided u0 and v0 are chosen appropriately. These def-
initions, however, are more complex than necessary.
Assuming the terms B1 and B2 have sufficient variance
in x, y, and z, u and v can be simplified to

u = (Cn-s − F )B1u0 (31)

v = (Cn-s − F )B2v0. (32)

Supersonic Outflow

Provided that the u0 and v0 from Eq. (31) and (32)
and n and T0 from Eq. (25) are defined appropriately,
there will exist regions where Mn > 1 and regions
where Mn < 1. Thus, different regions of the solution
can be used to test implementation of supersonic and
subsonic outflow enforcement at the surface G = Co.
For the supersonic case, there is no boundary condition
enforced, so there is no constraint upon p.

The Computational Domains

Functions F and G are used to define some of the
boundaries of the computational domain. A third
function, H is also needed to construct the domain,
although no boundary conditions are tested on H-
constant surfaces. The no-slip surface is the F = 0
surface, and the exit surface is the G = 0 surface. All
other F -constant surfaces are slip surfaces. F , G, and
H are defined as follows:

F =
1

2
cos(2x) cos(3y)− z (33)

G = x− 1
2
cos(y) sin(2z)− π

4
(34)

H = −y. (35)

A simple definition of H is permissible since no bound-
ary conditions will be tested on H-constant surfaces.
A six-sided domain can be defined by setting maxi-
mum and minimum values for F , G, and H. Figure
1 shows two domains. The smaller domain (shown in
green) was used for testing the slip condition along
its Fmax boundary, the supersonic outflow condition
along its G = 0 boundary, and the Euler equations on
its interior. The larger domain (shown in red) will be
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used for future testing of the no-slip condition along its
F = 0 boundary, the subsonic outflow condition along
its G = 0 boundary, and all available equation sets on
its interior. The mesh on the larger (red) domain has
points clustered toward the no-slip surface in an effort
to allow the tests to be performed on reasonably-sized
meshes.

x0
1

y0 0.5 1

z

0

1

2
Y

Z

X

supersonic outflow

slip

subsonic outflow

no-slip

Fig. 1 Computational domains for current and
future MMS testing

The Manufactured Solution
Once F , G, and H are defined, the manufactured

solution is defined as follows:

A1 = Gx −Gz
Fx
Fz

(36)

A2 = Gy −Gz
Fy
Fz

(37)

B1 =
A1√
A2

1 +A2
2

(38)

B2 =
A2√
A2

1 +A2
2

(39)

u =
3

4
(−F )B1asl (40)

v =
3

4
(−F )B2asl (41)

w = −Fxu+ Fyv

Fz
(42)

T = Tsl

(
1 +

1

4
(1 + sin(z))

)
F 2 (43)

p = psl −Gpsl (1 + cos(3x) cos(y)cos(2z)) (44)

ν̃ = −F ν̃∞
(
1 +

1

2
cos(2x) cos(3y) cos(4z)

)
, (45)

where:
asl = 340m/s (46)

psl = 101.3kPa (47)

Tsl = 288K (48)

ν̃∞ = 1.95νsl (49)

νsl = 1.464× 10−5m2/s. (50)

Testing of Interior Equations
Before any boundary condition is tested, it is a good

idea to test the interior equation set with which it is
coupled using only Dirichlet boundary conditions. (In
this case, the term “Dirichlet” is used in its mathe-
matical sense to mean that the value of the dependent
variable is specified at the boundary. In Premo, the
Dirichlet option sets the dependent variable to a con-
stant at the boundary. The more general case of a time
or spatially varying Dirichlet condition is handled via a
user-defined boundary condition option.) This allows
the interior equation set to be verified so that any sub-
sequent deviation from the observed order of accuracy
in the boundary condition tests can be rightfully in-
terpreted as a problem with the boundary condition
enforcement, rather than a problem with the interior
equation set. However, it is not necessary to verify ev-
ery possible option for the interior equation set before
progressing to the boundary conditions.
Because of the dependence of RANS and laminar

Navier-Stokes calculations on inviscid fluxes, the Eu-
ler equation set was verified first. Also, the relatively
low cost of Euler calculations provided a good starting
point. The Euler equation set was tested for both the
Green-Gauss and least-squares methods for gradient
reconstruction on unstructured meshes. Future work
will involve testing of the laminar Navier-Stokes and
RANS equation sets.
Figure 2 shows the observed order of accuracy of the

code for each mesh level. N is the number of nodes in
each of the three mesh dimensions. For mesh refine-
ment via doubling, the observed order of accuracy is
given by the following equation:

observed order =
log

(
‖εN/2‖

‖εN‖

)

log(2)
, (51)

where ε is the error (difference between discrete and
exact solutions) for the flow variable of interest, and
‖ε‖ is any norm of that error. The L∞, L2, and L1

norms are given for the errors in the flow variables ρ
and w. The behavior or the ρ error is representative of
the error in p, T , u, and v. These values indicate that
the second-order convergence is being asymptotically
approached for these code options. The L∞ norm of
w, however, lags the others and is not monotone. The
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Fig. 2 Convergence order for the Euler equations
with Green-Gauss

manufactured solution for w contains higher frequen-
cies because of the number of products of sinusoidal
functions dictated by Eq. (21). Higher frequencies re-
quire tighter mesh spacing to resolve, so more mesh
levels are required to reach the asymptotic regime. Be-
cause of this, one more mesh level will be run in the
future in order to observe the behavior of this norm.
However, as seen in Fig. 3, least-squares gradient re-
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Fig. 3 Convergence order for the Euler equations
with least-squares

construction only demonstrates first-order convergence
at best. Roy7 observed second-order accuracy for
the Euler equations using least-squares gradient recon-
struction with Premo, but his results were obtained on
uniform, Cartesian meshes. The least-squares formula-
tion used for the current tests was unweighted, and the
authors believe that the first-order behavior is a result
of inaccurate gradient calculation along curved bound-
aries and in skewed or higher aspect ratio cells. Inaccu-
racy in unweighted least-squares gradient reconstruc-
tion on non-uniform meshes was examined in-depth by
Mavriplis.8 He found that inverse distance weighting

produced a much more accurate result. While inverse
distance weighted reconstruction is available in Premo,
it was not used in this study. Future verification tests
with least-squares gradient reconstruction will exam-
ine the inverse distance weighted case.

Testing of Boundary Conditions
Since the Euler equation set implementation was

verified, its associated boundary conditions were ex-
amined next. Because the Euler equations verified to
second-order only with Green-Gauss gradient recon-
struction, each of the boundary conditions was tested
using Green-Gauss. That way, any first-order error
generated by the boundary conditions could be easily
detected.

The Slip Condition

Figure 4 shows the observed order of accuracy ver-
sus mesh size for the slip condition. Although the
L1 norms appear to be converging second-order ac-
curately, the L2 norms appear to be converging to
less than second-order, and the L∞ norms do not
appear to be converging at all. This seems paradoxi-
cal, since the convergence of one norm in the limit of
N →∞ implies that all norms should converge. How-
ever, this sample represents only the behavior in the
range 9 ≤ N ≤ 129. Convergence problems tend to
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Fig. 4 Convergence order for the slip condition

show up on coarser meshes in the L∞ norm while the
the L2 and especially the L1 norms tend to mask the
lack of convergence until the maximum local error (the
only component of L∞) dominates in the L2 and L1

computations. Figure 5 shows the error norms versus
mesh size for the slip condition. The L∞ norms level
off, while the L2 and L1 norms continue to converge.
It can be reasonably expected that further increases in
N would soon show the L2 norm leveling off and even-
tually also show the L1 norm leveling off. If so, that
would indicate the presence of an unordered compo-
nent of the error which would need to be removed via
a change in boundary discretization or by identifying
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the Slip BC

possible coding mistakes with the current boundary
discretization.
One major advantage of verification via manufac-

tured or exact solutions is that the actual error can
be examined in the domain. Figure 6 shows the er-
ror on the N = 65 mesh. The domain is rotated so
that the slip surface can be clearly seen. The maxi-
mum error in this solution (and also in the N = 33
and N = 129 solutions) is located where the slip sur-
face and subdomain boundaries intersect (the mesh is
divided by a domain decomposition program prior to
the start of parallel calculations). The coarser mesh
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Fig. 6 Error in u on the N = 65 mesh

solutions (N ≤ 17) were produced using only two pro-
cessors, and the surface dividing the two subdomains
did not intersect with the slip surface. However, for
the finer meshes (N ≥ 33), more processors were used,
and subdomain boundaries did intersect the slip sur-
face for these cases. This behavior was identified as
evidence of a possible problem with the slip condition
enforcment at subdomain boundaries.
To determine if the slip condition converges second-
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Fig. 7 Convergence order for the slip condition on
2 processors

order accurately when no subdomain boundaries in-
tersect with the slip surface, the N = 33 and N = 65
solutions were recomputed on only two processors (the
N = 129 mesh was too large). Figure 7 shows the ob-
served convergence order for these cases. Most of the
norms (including the L∞ norm of the w error) behave
similarly to the Euler, Green-Gauss case with Dirichlet
boundary conditions. The exception is the L∞ norm
of the v error, which is shown in this figure because it,
like the L∞ norm of the w error for all of the cases,
behaves differently than the norms of the other vari-
ables’ error. It is not (yet) asymptotically approaching
2 in this range of mesh sizes. More refined meshes
(N = 129 and N = 257) are needed to confirm the
convergence order, but it can be concluded that the
problem observed in Fig. 4 is not present for this case.

The Supersonic Outflow Condition

Since no information propagates into the domain
through a supersonic outflow boundary (all the eigen-
values are positive), the solution at this boundary is
actually constrained only by the interior equations (no
boundary conditions exist, in the mathematical sense).
Figure 8 shows the observed order of accuracy for the
Euler equations coupled with the supersonic outflow
condition. Correct handling of a fully supersonic out-
flow condition requires that the only constraints upon
the solution come from the governing equations, and
this appears to be demonstrated since second-order
accuracy is suggested. Finer meshes are needed for
confirmation, especially for the error in w.

Conclusions

A manufactured solution was derived which is ca-
pable of testing the Euler, laminar Navier-Stokes, and
RANS equations on non-uniform meshes along with
the slip and no-slip (both adiabatic and isothermal)
conditions and outflow (both subsonic and supersonic)
boundary. Tests have been carried out for the Euler
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Fig. 8 Convergence order for the supersonic out-
flow condition

equations using both Green-Gauss and least-squares
gradient reconstruction, the slip condition, and the su-
personic outflow boundary. The code verified to the
expected order of accuracy (second-order) for the Eu-
ler equations using Green-Gauss and the supersonic
outflow condition. Least-squares gradient reconstruc-
tion showed first-order behavior, but the formulation
used was unweighted. The authors believe that the
first-order behavior is a natural consequence of the for-
mulation, rather than an indication of a bug. Premo
contains an inverse-distance weighted formulation, so
this formulation will be examined in future tests. The
insight gained from the analysis of the least-squares
gradient reconstruction underscores the value of per-
forming verification on non-uniform meshes. In previ-
ous work7 on uniform, Cartesian meshes, second-order
convergence for the Euler equations was observed with
both Green-Gauss and least-squares gradient recon-
struction. Tests of the slip condition identified a prob-
lem with the interaction between the slip condition
enforcement and the parallel decomposition and com-
munication. Second-order accuracy is suggested for
the slip condition when no subdomain boundaries in-
tersect the slip surface, but finer meshes are needed to
confirm this.
This work demonstrated the value of using the

method of manufactured solutions for verifying the
boundary conditions of CFD codes. The derived man-
ufactured solution is applicable not only to Premo,
but also to general CFD codes. Through the imple-
mentation of this manufactured solution in Premo, a
bug was found in the parallel enforcement of the slip
condition which would have otherwise been difficult
to detect. Also, the possible sensitivity to weighting
in least-squares gradient reconstruction was identified.
If a sequence of solutions using the inverse distance
weighting shows second-order convergence, then the
default weighting within Premo will be changed from
unweighted to inverse distance weighting. (Both op-

tions currently exist in the code; the only issue is which
should be the default.)
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