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SUMMARY 

Part I of this work presents a detailed  multi-methods  comparison of the  spatial  errors  associated  with 
the one-dimensional  finite  difference,  finite  element and  finite  volume  semi-discretizations of the  scalar 
advection-diffusion equation.  In  Part I1  we extend  the  analysis to  two-dimensional  domains and  also 
consider the  effects of wave propagation  direction  and grid aspect  ratio on the phase  speed,  and  the 
discrete  and  artificial diffusivities. The observed  dependence of dispersive  and diffusive  behavior on 
propagation  direction  makes  comparison of methods  more difficult relative to the one-dimensional 
results. For this  reason,  integrated (over propagation  direction  and  wavenumber)  error  and  anisotropy 
metrics are introduced to  facilitate  comparison  among the various  methods.  With  respect  to  these 
metrics,  the  consistent  mass  Galerkin  and control-volume  finite  element methods,  and  their  streamline 
upwind  derivatives,  exhibit  comparable  accuracy,  and  generally  out-perform the finite-difference  based 
schemes.  While this work can  only  be considered a first step in a comprehensive  multi-methods 
analysis  and  comparison,  it serves to  identify  some of the relative  strengths  and weaknesses of multiple 
numerical  methods  in a common mathematical framework. 
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1. INTRODUCTION 

In the two-dimensional analysis, the effect of grid aspect  ratio, y = Ay/Ax,  and wave 
propagation  direction, 8,  on the noted numerical artifacts is examined as a  function of discrete 
wavenumber. In 52, several  metrics are introduced that provide integrated (over propagation 
direction  and wavenumber) measures of anisotropy and error to  allow a quantitative  methods 
comparison. The metrics  section is followed by  a  presentation of phase  speed,  discrete 
diffusivity, and artificial diffusivity results for the finite  element, control-volume finite  element, 
and finite difference/volume semi-discretizations in two dimensions.  Finally, the results of both 
Parts I and I1  of this  paper  are summarized and conclusions drawn. 

2. METRICS 

Relative to  the one-dimensional results, the two-dimensional results add propagation  direction, 
8 (see Figure 1, Part  I),  to  the parameter  space  (group  speed  direction is also a relevant 
parameter [I], but  is  not included here). The addition of 9 significantly increases the complexity 
of the phase speed and diffusivity results.  In  order to  present  these  results,  polar  plots  are 
generally used. Figure 1 shows a plot of phase speed for a representative two-dimensional semi- 
discretization  on a unit  aspect  ratio grid.  In  Figure 1, the radial  coordinate  is  phase  speed, 
E/c, and  the propagation  direction  is  associated  with the azimuthal  coordinate.  Polar curves 
at k e d  non-dimensional wavenumber are  plotted  in  the figure with each curve  representing 
the dimensionless phase  speed for that wavenumber. In  this work, curves at 2Ax/X = 0, 0.2, 
0.4, 0.6, 0.8 and 1.0 are  plotted.  The figure clearly demonstrates the anisotropic behavior 
(i.e., B dependence) of the non-dimensional phase  speed, C/c. For this example, the anisotropy 
becomes more pronounced as dimensionless wavenumber increases from 0 to 1. 

Although  polar  plots  such as  that shown in Figure 1 suggest the degree of anisotropy  and 
accuracy of an  individual method, a  quantitative  measure is desired. For this reason, two 
metrics  are  introduced. The first metric  is the coefficient of variation, 

c(2Ax/X) = 
g(2Az/X) 
G( 2Ax/A) ' 

which provides a  measure of the anisotropy of a method for a given dimensionless wavenumber. 
In  Eq. (l), G is a generic variable  representing Z/c or &/a, 

G(~Ax/X)  = - iT J,'" G(2Ax/X, B)d9 
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GENERALIZED  NEUMANN  ANALYSES: PART I1 3 

90 

Figure 1. Non-dimensional  phase  speed (E/c; radial coordinate) as a function of 0 (azimuthal 
coordinate). 

is its  mean  and, 

a(2Ax/X) = /& l" (G(2Ax/X1 0) - G(2Ax/A)) dB 
2 

its  standard deviation at  some 2Ax/X. 
It is clear from Eqs. (1) - (3) that an  isotropic scheme yields <(2Az/X) = 0 because 

G(2Ax/X70) = G(2Ax/X) for all 8. Similarly, large values of c correlate to  a high degree of 
anisotropy so that a  direct comparison between methods  can  be  made at  a given wavelength, 
and between wavelengths for a given method. For the scheme represented by Figure 1, < = 
0.0, 1.2 X 5.0 X lop2, 1.3 X 2.9 X 10-1 and 7.0 X lo-' for 2Ax/X = 0, 0.2, 0.4, 
0.6, 0.8 and 1.0, respectively. As indicated by <(O) and suggested by the figure, the scheme is 
perfectly isotropic in  the limit of infinite wavelength (i.e, 2Ax/X = 0). As wavelength decreases, 
the method becomes increasingly anisotropic. At the Nyquist limit, 2Ax/X = 1, the method 
demonstrates the greatest  anisotropy in this measure. 

The average value of the coefficient of variation, 

1 

s = 1 <(2Ax/X)d(2Ax/X) (4) 

is also employed here and provides a single number,  independent of 2Ax/X, which may also 
be used for comparison of discretization schemes. Again, a larger value of T indicates  (on 
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4 T.E. VOTH, ET AL. 

average) greater  anisotropy while 5 = 0 is representative of a  method that is isotropic for all 
wavelengths. 

While the c and 5 metrics provide a  quantitative  measure of a  method's  anisotropy  in 
phase and discrete diffusivity, they  do  not provide a  measure of the error  associated  with  a 
discretization.  Indeed, it is possible for a  discretization scheme to have significant error in 
phase or diffusivity, while still  demonstrating  isotropic  behavior.  In the case of phase  speed, 
this (unlikely) result is characterized by a perfectly isotropic  phase which differs from the ideal 
such that 2;(2Az/X) = C(2Az/X,O) # c. For this reason, we introduce  a second metric, the 
RMS error  metric, 

This  metric measures the azimuthal  deviation of G from its  true (i.e. physical) value g. For 
dimensionless phase speed and discrete diffusivity, g = 1. Hence, an ideal scheme will have 
&(2Az/X) = 0 for all wavelengths 0 5 2Az/X < 1. For the scheme represented by Figure 1, E 

='0.0,'5.0 x 1.9 x lo-', 3.9 x 6.2 x 10-1 and 8.3 
0.6, 0.8 and 1.0 respectively. 

The average value of E over 2Az/X, 

1 
E = ~(2Az/X)d(2Az/X) 

is also employed here as  it provides a single error  metric that 

x 10-1 for 2Ax/X = 0, 0.2, 0.4, 

(6) 

facilitates  methods comparison. 
Larger values of Z indicate, on average, larger  errors for the method.  The  method of Figure 1 
yields Z = 3.3 X low2 in terms of phase  speed. 

3. RESULTS 

3.1. Phase  Speed 

This  section begins with  a  presentation of the analytic expressions for the non-dimensional 
phase speed for all the semi-discrete methods considered. A summary of the phase speed 
results  in terms of polar  plots and  the anisotropy  and  error  metrics follows. 

Phase  Speed  Formulae Owing to  the  nature of the linear advection-diffusion equation,  the 
trial solution  and the Cartesian  grid,  the two-dimensional dispersion formulae for some of 
the methods  can  be  written in terms of the one-dimensional formulae presented in Part I. The 
representation of the two-dimensional phase formulae in terms of the one-dimensional formulae 
is  particularly useful in  understanding the complex dispersive behavior for the two-dimensional 
discretizations. Thus,  the two-dimensional phase speed for FEM,  CVFEM,  CD, SOU, TOU, 
Fromm and QUICK can  be  written as 

- 
C 

c 
- = cos2 6 FEID (kAx cos 6) + sin2 6 F i D  (kAy sin e). (7) 
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GENERALIZED  NEUMANN  ANALYSES: PART I1 5 

In  Eq. (7) F;O(6) is the  method’s one-dimensional phase  speed  formula (cf. Table 11, Part I) 
where 6 = kAx is replaced by kAx cos e or kAy  sin 8. Using FEM as an example, 

FiD(?Y) = - sin(8) 3 
6 2 + cos(#) ’ 

and hence the phase  speed formula is, 
- 
C sin(kAx cos e)  3 - = cos2e 
C kAz cos e 2 + cos( kAx cos 0) 

+ sin2 e sin(ykAx sin e )  3 
ykAx sin 8 2 + cos(ykAz sin e)  

where yAx = Ay has been used (c.f. Eq. (2.6-200) in  Gresho and Sani [2]). 
As expected, the one-dimensional formula is recovered along the coordinate  directions  (i.e. 

8 = 0,7r/2,7r, and 37r/2), in  terms of the corresponding  mesh  increment (Ax or f ly )  for 
the coordinate  direction.  Furthermore, for plane waves propagating  normal to  the diagonal 
(e  = 7r/4) of a  square grid (y = l), the two-dimensional formula reverts to  the one-dimensional 
result,  but  with  an effective grid spacing of Axeff = Axfi/2, 

In general, the two-dimensional phase  speed  can be  written  in  an analogous one-dimensional 
form whenever 8 = e* = arctan (l/y). In  this case Axcos 0 = Lly sin 6 and hence Eq. (7) 
reduces to - 

- = F~D(kAxcosO*). (11) 

This is the one-dimensional phase speed  on  a  grid  with  an effective spacing of AxcosB*.  In the 
following results  section, the effect of this “enhanced”  resolution along the directions  normal 
to  the grid diagonals will be realized by a reduced phase  error  compared to those along the 
coordinate  directions. 

C 

C 

Remark. When considering grids  with  aspect  ratios  other than unity, the 
appropriate  Nyquist frequency of the mesh should be based on the larger of Ax 
or  Ay, i.e., the coarsest mesh spacing.  In the ensuing discussion, only y 5 1 are 
considered which implies that  the Nyquist limit for the grid will be based on Ax. 
Consideration of y > 1 would require that  the grid Nyquist  limit be based on Ay. 

As suggested above, several of the methods considered cannot be  written  in the form of 
Eq. (7). These  include the central difference with  consistent  mass (CD-M,),  the LSR schemes, 
SUPG,  and SUCV. The  CD-M,  method is an ad hoc method derived by assuming linear 
variation of the unknown over the control volumes for the mass matrix,  and using standard 
CD for the advection  operator. Its two-dimensional phase  speed  is given by, 

where we have introduced  the  notation 0, = kAxcos8,  and OY = ykAxsin 0 (= kAy sin$). 
Eq. (12) cannot be cast in the general form of Eq. (7) because it does not  revert to  the 
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6 T.E. VOTH, ET AL. 

one-dimensional formula when the wave propagation  direction is a t  right angles to  the mesh 
diagonals. 

However, as  with the methods discussed above, one-dimensional behavior is obtained for 
propagation angles aligned with  coordinate axes. Not surprisingly, both CD-M, and  CVFEM 
yield identical  phase  speed  behaviors along coordinate  axes  because  their one-dimensional 
formulae are identical  (cf. Table I1 of Part I). Finally, it is of interest to  note that lumping the 
CD-M, mass matrix results  in the leading term on the right-hand  side of Eq. 12 becoming 
unity, and  the formula reverts to  the phase  speed for the CD  method, 

which follows the simple form of Eq. (7). 
The phase speed for LSR(0)  is given by, 

1 + s in2~-[~s in~ , (7+2cose , ) - s in28 , (~+2cose , ) ]  
1 ze, (14) 

This scheme also does not follow the general form of Eq. (7), as it contains  terms involving cross 
products of the x and y components.  These  cross-terms  arise because the advection stencils 
include terms from all neighboring grid  points (cf. Appendix of Part I). This is also true for 
the  FEM  and  CVFEM  operators, however the symbol  factors conveniently to  eliminate the 
cross terms. Along the coordinate  directions (i.e. in one dimension) Eq. (14) becomes 

E 1  
c 429 
- = - (6sin29 - 

where 29 = 8, along the x direction  and 8 = 8, along the y direction.  Incidentally, this is the 
one-dimensional version of Fromm’s method. 

The phase  speed for LSR(-1) is: 
- 
C 1 
- = cos2 0 - [4(2 + COS e,) sin 0, - (1 + 2 COS e,) sin 20,] 
C 66, 

1 + sin2 8 - [4(2 + cos e,) sin 8, - (1 + 2 cos e,) sin ad,] . 
60, 

Along the coordinate  directions the phase  speed is, 
Z l  

- = -(4sin6 - sin28), 
c 28 
L I  

where 29 = 8, along the X direction and 8 = 8, along the y direction. This  is  the one-dimensional 
formula for SOU. 

The phase speed formulae for SUPG  and  SUCV  are given by, 
I 

C (cos2 e q e , )  + sin2 e q e , ) )  
c [ 1 + P2(e, 3- ey)2  (cos2 e q e , )  + sin2 e ~ ( e , ) ) ~ ]  
- =  X 

Copyright @ 2000 John Wiley & Sons, Ltd. 
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GENERALIZED  NEUMANN  ANALYSES:  PART I1 

where 

F(6) = 
2(1 -  cosd) 

,& = P(cosB+ysinB) 

7 

M(8) is the symbol for the mass matrix  operator given in  Table  I of Part I and P is the 
stabilization  parameter. The two-dimensional  formula  reverts to the one-dimensional  formula 
along the  coordinate directions. 

Phase Speed Results The phase  speed  results for our  two-dimensional  semi-discretizations are 
presented  in  Figures 2 to 15. Figures (a) and (b) for each  semi-discretization  present C/c for 
grid  aspect  ratios of y = 1 and y = 1/2 respectively. As in the example  polar  plot,  Figure 1, 
phase  speed  curves are  plotted for 2Ax/X = 0,0.2,0.4, 0.6,0.8 and  1.0.  In  the  absence of phase 
errors, the ideal  semi-discrete  phase  speed would exactly  replicate  the continuous  phase  speed 
for the  entire  discrete  spectrum from the limit  2Az/;\ --+ 0 to  the grid  Nyquist  limit. Hence, in 
the ideal  case, the phase  speed  curves would be  circular,  each giving C/c = 1. However, all of 
the  methods  considered  here  introduce  either  leading or lagging  phase  speeds, the magnitudes 
of which are  dependent  on  wavelength,  grid  aspect ratio  and propagation  direction. 

Several points  regarding the semi-discretizations are noted  before  beginning the discussion of 
results. First, phase  speed for the FEM-SUPG  (Figures 3 and 4) and  CVFEM-SUCV  (Figures 
6 and 7) are presented for pure  advection,  i.e.,  when P, --+ 00. Second,  results for the lumped 
mass  variants of FEM  and  CVFEM  are not  included  here as their  results are significantly 
degraded  relative to their consistent  mass  counterparts (see Part I for examples of the effects of 
mass  lumping).  Finally,  the  reader is reminded that  the FOU scheme may  be  decomposed into 
a  centered  second-order  advection scheme with  concomitant  second-order  centered diffusion 
operator. For this reason,  phase  speed  results for the FOU and “Centered FDMI scheme are 
identical  and so presented  as  one  result. 

Several characteristics are evident from the series of figures presented  here. First,  the figures 
clearly  indicate  anisotropic wave propagation for all  schemes  considered  with the y = 1/2 cases 
demonstrating less 8-dependence than their y = 1 counterparts.  Indeed,  the y = 1 cases all 
show quarter-symmetry while the y = 1/2 discretizations show half-symmetry, both behaviors 
being consistent  with the  symmetry of their  respective spatial grids. It is also evident from 
the figures that  this anisotropy  generally  increases  with  increasing  2Ax/X. This observation is 
demonstrated  quantitatively in Tables  I  and 11 where the coefficient of variation of the phase 
speed, <E, and  its mean c are  presented. The  tables show that <z generally grows with  increasing 
2Ax/A.  In terms of the metric,  and  relative to  the grid  aspect  ratio, y = 1/2  minimizes 
&dependence for all but  the LSR semi-discretizations.  Finally, it is evident  from  a  method-to- 
method  comparison of that FEM-SUPG  and  CVFEM-SUCV minimize anisotropic  behavior 
irrespective of grid  aspect  ratio given the proper choice of stabilization  parameter.  Note that 
the LSR schemes provide good isotropy for the y = 1 case but become more  anisotropic 
(relative to  the other  methods) for y = 1/2. 
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8 T.E. VOTH. ET AL. 

90 90 

270 

Figure 2. Non-dimensional  phase  speed (E/c; radial) as a function of 0 (azimuthal) for the consistent 
mass  Galerkin  finite  element  method (FEM - M,) with a) y = 1 and b) y = 1/2. 

The series of figures in  this section also provides information concerning the phase error 
of each method. As suggested by the anisotropy discussion above, this  error  is dependent 
on wavenumber as well as propagation angle. Indeed the methods generally demonstrate  a 
minimum error along the 8 = 7r/4 and 7r/2 directions for the unit  and 1/2 aspect  ratio cases 
respectively. These ‘preferential’ directions are a  result of the  better resolving power of the grid 
in these  directions (cf. 53.1). A quantitative  measure of the discrete  phase  errors is presented 
in Tables I11 and  IV. As with ct,  the phase  errors, E ? ,  generally increase  with increasing 
2Ax/X, peaking at  the Nyquist limit.  In terms of the metric, the y = 1/2 results minimize 
phase  errors  relative to  the unit  aspect  ratio cases. Finally, it is evident from a comparison 
of between methods, that FEM-SUPG and CVFEM-SUCV minimize errors, for either y, 
given the proper choice of stabilization  parameter (p  = popt and 1/2 for SUPG  and SUCV 
respectively).  Note that FOU  demonstrates by far the worst phase  error (in terms of G) relative 
to  the other  semi-discretizations, regardless of aspect  ratio. 
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90 90 
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270 
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270 
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Figure 3. Non-dimensional  phase  speed (E/c; radial) as a function of 6' (azimuthal) for consistent  mass 
matrix  finite  element  method  SUPG  with Popt;  a) y = 1 and b) y = 1/2. 

90 90 

___. 

a) 
270 270 

Figure 4. Non-dimensional  phase  speed (Z/c; radial) as a function of 6' (azimuthal) for consistent  mass 
matrix  finite  element  method  SUPG  with P = l/2;  a) y = 1 and b) y = 1/2. 
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10 T.E. VOTH, ET AL. 

90 90 

Figure 5 .  Non-dimensional  phase  speed (Z/c; radial) as a function of 6 (azimuthal) for the consistent 
mass  control  volume  finite  element  method (CVFEM) with  a) y = 1 and b) y = 1/2. 

Figure 6. Non-dimensional phase  speed (E/c; radial) as a function of 6 (azimuthal) for consistent mass 
matrix  control volume  finite  element method SUCV with &,t; a) y = 1 and b) y = 1/2. 
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GENERALIZED  NEUMANN  ANALYSES: PART I1 11 

90  90 

Figure 7. Non-dimensional  phase  speed (Z./c; radial) as a function of 6 (azimuthal) for consistent  mass 
matrix  control volume  finite  element method SUCV with p = 1/2;  a) y = 1 and b) y = 1/2. 

180 

a) 
270 270 

Figure 8. Non-dimensional  phase  speed (Z./c; radial) as a function of 6 (azimuthal) for the  central 
difference method  (also FOU). Results for aspect  ratios of a) y = 1 and b) y = 1/2  are shown. 
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12 T.E. VOTH, ET AL. 

90 90 

Figure 9. Non-dimensional phase  speed (E/c; radial) as a function of 0 (azimuthal) for the consistent 
mass  matrix  central difference  discretization (CD-M,). Results for aspect  ratios of a) y = 1 and b) 

y = 1/2 are shown. 

90  90 

.... .... ...... .. _- 

4 
270 270 

b) 

Figure 10. Non-dimensional  phase  speed (E/c; radial) as a function of 6 (azimuthal) for the second- 
order  upwind  finite  difference  discretization (SOU). Results  are shown for aspect  ratios of a) y = 1 

and b) y = 112. 
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90 90 

180 

a) 
270 270 

Figure 11. Non-dimensional  phase  speed (E/c; radial) as a  function of 8 (azimuthal) for the finite 
difference  discretization  with  third-order-upwind (TOU) differencing.  Results for aspect  ratios of a) 

y = 1 and b) y = 1/2  are  shown. 

90  90 

0 

Figure 12. Non-dimensional  phase  speed (E/c; radial) as a function of 8 (azimuthal) for F’romm’s 
method.  Results for a) y = 1 and b) y = 1/2  are shown. 
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14 T.E. VOTH, ET AL. 

90 90 

270 270 

Figure 13. Non-dimensional  phase  speed (E/c; radial) as a function of 0 (azimuthal) for the QUICK 
scheme with  a) y = 1 and b) y = l/2. 

90 90 

0 

270 

Figure 14. Non-dimensional phase  speed (Yc ;  radial) as a function of 0 (azimuthal) for the node- 
centered  finite  volume  method  with  least  squares  gradient  reconstruction, LSR(O), with  a) y = 1 and 

b) y = 1/2. 
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90 90 
2Mh 

270  270 
a) b) 

Figure 15. Non-dimensional  phase  speed (E/c; radial) as a  function of 0 (azimuthal) for the node- 
centered  finite  volume  method  with  least  squares  gradient  reconstruction, LSR(-l), with a) y = 1 and 

b) y = 1/2. 
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16 T.E. VOTH, ET AL. 

Method 

cz as a function of 
2Ax/X 

0.0 I 0.2 I 0.4 I 0.6 1 0.8 I 1.0 
FEM-M, 0.0 2.43e-4 4.60e-3 3.14e-2 1.55e-1 7.45e-1 
SUPG P o p t  0.0 9.36e-5 1.48e-3 8.64e-3 6.44e-2  6.43e-1 
SUPG P = 1/2 0.0 6.13e-4 8.79e-3 3.68e-2 7.56e-2 5.32e-1 
CVFEM-M, 0.0 3.26e-3 1.79e-2 6.48e-2 2.11e-1 7.40e-1 
sucv P o p t  0.0 2.95e-3 1.27e-2 3.82e-2 1.41e-1 6.80e-1 
SUCV p = 1/2 0.0 2.17e-3 4.37e-3 1.77e-2 4.92e-2 5.81e-1 
FDM 0.0 1.19e-2 5.06e-2 1.29e-1 2.85e-1 7.00e-1 
FOU 
CD-M, 0.0 1.19e-2  5.21e-2  1.38e-1 3.22e-1 7.60e-1 
sou 0.0 1.72e-2 2.39e-2  3.53e-2  2.15e-1 7.72e-1 ~ ~~ 

TOU 0.0 1.31e-3 1.85e-2 8.22e-2 2.47e-1 7.38e-1 
Fromm’s 0.0 3.62e-3 5.71e-3 6.66e-2 2.36e-1 7.50e-1 
QUICK 0.0 3.86e-3 2.56e-2 9.16e-2 2.55e-1 7.31e-1 
LSR(0) 0.0 4.68e-3 8.14e-3 1.31e-2 1.12e-1 6.36e-1 

.~ ~ . - 

L I I I I 1 1  0.0 1 1.92e-2 I 4.81e-2 I 5.29e-2 I 2.46e-2 I 5.86e-1 

- 
cz 

1.13e-1 
7.92e-2 
7.75e-2 
1.33e-1 
1.07e-1 
7.28e-2 
1.65e-1 

1.81e-1 
1.36e-1 
1.44e-1 
1.37e-1 
1.48e- 1 
9.13e-2 
8.75e-2 

Table I .  Coefficient of Variation of phase speed, <e, as a function of 2Ax/X, and its average, R, for the 
two-dimensional, y = 1 semi-discretizations. 

3.2. Discrete  Diffusivity 

This section begins with a presentation of the analytic expressions for the dimensionless discrete 
diffusivity for all the semi-discretizations considered. A summary of the discrete diffusivity 
results  in terms of polar  plots and  the anisotropy and error  metrics follows. 

Discrete  Diffusivity Formulae Some, but  not all, of the two-dimensional formulae for discrete 
diffusivity can  be  written  in the same  form as for phase  error,  Eq.  (7), if  we replace F2D with 
the one-dimensional formula for dimensionless discrete diffusivity, FAD,  given in  Table VI of 
Part I. The result is, 

I a 
- = cos2f3 F~D(kAzcosO) +sin2f3  FAD(ykAa:sin8). 
a (20) 

The  methods which have this form include all of the  FDMs  (CD,  FOU, SOU, TOU, QUICK, 
and  Fromm) and  the LSR schemes, because they all share the same  5-point  CD diffusion stencil 
and mass  matrix.  Although  they  do  not  share  similar  operators,  FEM  and  CVFEM  can also 
be  written  in  the form of Eq. (20). 

From Part  I,  the one-dimensional discrete diffusivity for FEM or CVFEM may be  written 
in terms of 6 as 

FG = 
2(1 - cos6) 1 

6 2  M ( 6 ) ‘  
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as a function of 
2Ax/X 

Method 
9.42e-2  5.3Oe-1 1.63e-1 3.72e-2 5.75e-3  3.11e-4 0.0 FEM-M, 

8 1 .o 0.8 0.6  0.4 0.2 0.0 - 

SUPG Boo,,+ 5.61e-2  4.44e-1 5.37e-2  3.81e-3  4.90e-4 3.65e-5 0.0 
SUPG P = 1/2 

4.94e-2  4.04e-1 2.83e-2  8.47e-3  4.67e-3 3.50e-3 0.0 SUCV B = 112 

1.26e-1 5.51e-1  2.37e-1 8.64e-2  2.65e-2  5.17e-3 0.0 CVFEM-M, 
6.45e-2 3.55e-1 8.85e-2  4.43e-2  1.12e-2 8.44e-4 0.0 

I "y" 

sucv Popt 9.40e-2  4.91e-1 1.51e-1  5.03e-2 1.89e-2  4.68e-3 0.0 

/ FDM 1 1  0.0 I 1.91e-2 I 7.79e-2 I 1.82e-1 I 3.39e-1 I 5.62e-1 1 1  1.80e-1 1 I1 I I I I I 

FOU 
CD-M, 1 1  0.0 I 8.82e-3 I 3.99e-2 I l . l le-1 I 2.60e-1 I 5.22e-1 1 1  1.36e-1 .. 
sou 

1.38e-1 5.65e-1  2.76e-1 1.04e-1 2.41e-2 1.70e-3 0.0 TOU 
1.18e-1 5.71e-1  2.07e-1 1.23e-2  5.80e-2  3.02e-2 0.0 

I 1 

Fromm's 

1.22e-1 5.75e-1  2.44e-1 6.80e-2  3.49e-3 6.73e-3 0.0 LSR(0) 
1.47e-1 5.65e-1 2.90e-1  1.21e-1 3.65e-2  5.94e-3 0.0 QUICK 
1.24e-1 5.67e-1 2.54e-1  7.38e-2  2.17e-3 6.62e-3 0.0 

LSR(-l) 0.0 3.04e-2  6.17e-2 1.22e-1 5.95e-1  1.92e-1  2.71e-2 

Table 11. Coefficient of Variation of phase  speed, G ,  as a  function of 2Ax/X, and  its  average, E,  for 
the two-dimensional, y = 1/2 semi-discretizations. 

n E? a s  a function of II 
2Ax/X II II 

0.4 
1.12e-2 
3.97e-3 
2.91e-2 
6.36e-2 
4.54e-2 
1.28e-2 
1.89e-1 

5.30e-2 
2.39e-1 
4.75e-2 
2.69e-2 
8.27e-2 
1.08e-2 
2.07e-1 

0.6 & E  1.0 0.8 - 

6.92e-2 
7.34e-2 5.61e-1  6.78e-2 1.46e-2 
1.39e-1 6.90e-1 2.71e-1 

J 

1.14e-1 

3.32e-1  8.29e-1 6.17e-1  3.91e-1 
7.06e-2 5.14e-1  5.21e-2  2.18e-2 
1.47e-1 6.43e-1  2.54e-1  1.04e-1 
2.09e-1  7.45e-1 4.15e-1 1.82e-1 
1.3Oe-1 4.87e-1 2.62e-1 

I I I1 

1.46e-1 I 3.39e-1 I 6.41e-1 1 1  1.74e-1 1 
I I 

2.25e-1 I 2.14e-1 I 6.60e-1 1 1  2.20e-1 1 ~ ~ 

1.94e-1 
1.78e-1 7.31e-1  3.78e-1  1.02e-1 
2.16e-1 7.61e-1  4.55e-1 

~~ ~ ~~ 

2.43e-1 
2.10e-1 8.19e-1 4.63e-1  1.47e-1 
2.44e-1 7.77e-1 4.94e-1 

, I 

1.07e-1 I 3.11e-1 I 8.10e-1 11 2.23e-1 

Table 111. RMS error of discrete  phase  speed, & E ,  as a  function of 2Ax/X, and its average, g ,  for the 
two-dimensional, y = 1 semi-discretizations. 
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18 T.E. VOTH, ET AL. 

Method ll EE as a function of 
2Ax/X 

0.0 I 0.2 I 0.4 1 0.6 I 0.8 I 1.0 Ii K ll 
FEM-M, 9.80e-2  4.85e-1 1.91e-1 4.87e-2 7.86e-3 4.31e-4 0.0 
SUPG LInc,,+ 5.39e-2  4.11e-1 5.87e-2 3.95e-3 9.49e-4 7.35e-5 0.0 

FOU 
CD-M, 11 0.0 I 8.83e-3 I 4.01e-2 I 1.12e-1 I 2.55e-1 I 4.64e-1 ) I  1.30e-1 

Y sou 

5.84e-2 1.06e-2 0.0 QUICK 
1.27e-1 5.09e-1 2.67e-1 7.63e-2  2.30e-2 1.44e-2 0.0 Fromm’s 
1.51e-1 5.32e-1 3.18e-1 1.36e-1 3.33e-2  2.37e-3 0.0 TOU 
1.85e-1  5.07e-1 2.35e-1 1.95e-1 1.76e-1 6.43e-2 0.0 

1.72e-1 5.47e-1  3.48e-1 1.71e-1 
LkR(0) 8.00e-2 1 2.85e-1 I 5.42e-1 11 1.34e-1 1.79e-2 1.41e-2 0.0 
LSR(-l) 1.55e-1 I 1.89e-1 1 5.16e-1 1 1  1.67e-1 1.68e-1 6.38e-2 0.0 

Table IV. RMS error of discrete  phase  speed, E P ,  as a function of 2Ax/X, and its average, 5, for the 
two-dimensional, y = 1/2 semi-discretizations. 

Substitution  into  Eq. (20) yields the two-dimensional formula for FEM/CVFEM, 
- a 
- = cos2e 
a (kAxcos8)2 M(0,) 

2(1- cos(kax cos e ) )  1 

2(1 - cos(ykAx sine)) 1 + sin2 e 
(ykAx sin M(0,). (21) 

Notice that  the discrete diffusivities represented by Eq.  (20)  degenerate to  the one-dimensional 
form when the wave is  propagating  in a direction  normal to  the grid diagonals, i.e., when 0 
= e* = arctan  (l/y).  In  this case Eq.  (20) becomes the one-dimensional version of discrete 
diffusivity, - 

Q 

a 
- = F ; ~  ( k a s  cos e*) (22) 

on an effective mesh spacing of k A x  case*, the spacing between grid diagonals. 
The two-dimensional discrete diffusivity for SUPG  and SUCV is 

Discrete  Dzflusivity  Results The discrete diffusivity results for our two-dimensional semi- 
discretizations  are  presented in Figures  16 to  23. Figures (a)  and  (b) present &/a for grid 
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aspect  ratios of y = 1 and 1/2 respectively. Dimensionless discrete  diffusivity  curves are  plotted 
for 2Ax/X = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. In  the ideal  case, the discrete  diffusivity would exactly 
replicate the continuous  diffusivity for the  entire discrete  spectrum from the limit 2Ax/X + 0 
to  the grid  Nyquist  limit. Hence, in the ideal  case, the discrete  diffusivity  curves would be 
circular,  each giving &/a = 1. However, all of the  methods considered  here are  either over- or 
under-diffusive, the magnitude of the error  in  diffusivity  being  dependent  on  wavelength,  grid 
aspect  ratio  and  propagation  direction. 

Several  points  regarding the semi-discretizations are noted before beginning the discussion of 
results. First,  results for the lumped  mass  variants of FEM  and  CVFEM  are  not  included  here 
because  their  results are significantly  degraded  relative to their  consistent  mass  counterparts. 
Second, as the finite difference semi-discretizations use second-order  centered  approximations 
for the diffusion operator  in  conjunction  with a lumped  mass matrix,  they yield identical 
discrete  diffusivities (the exception  being CD-M, where the “consistent”  mass matrix is 
used). For this reason,  discrete  diffusivity  results for the lumped  mass  finite difference schemes 
considered  here  are  identical  and  presented as one  result  labeled  FDM. 

Several characteristics  are  evident from the series of figures presented  here. First,  the figures 
clearly  indicate  anisotropic  discrete  diffusivities for all  schemes  considered. As with the two- 
dimensional  phase  speed  results, the y = 1 cases all show quarter-symmetry while the y = 
1/2 discretizations show half-symmetry. The figures also suggest that  the anisotropy  generally 
increases  with  increasing 2Ax/X. This observation is demonstrated  quantitatively  in  Tables V 
and VI where the coefficient of variation of the discrete  diffusivity, q ~ ,  and  its  mean, E, are 
presented. The tables show that ~6 generally grows with  increasing dimensionless wavenumber. 
In  terms of the  metric,  and  relative to  the grid  aspect  ratio, y = 1/2 minimizes @-dependence 
for all but  the  FEM-M,  and SUCV p = 1/2 semi-discretizations.  Finally, it is evident from 
a method-to-method  comparison of that  FEM-M, and CVFEM-M, minimize anisotropic 
behavior  regardless of grid  aspect  ratio.  Note that  the SUCV and  SUPG schemes can achieve 
equal or better anisotropy  performance  relative to FEM  and  CVFEM given the proper choice 
of ,fl though  a  poor choice yields the overall worst  anisotropy. It is also  interesting to note 
that  the best choice of stabilization  parameter for SUCV ( p  = 1/2) in terms of phase  speed 
anisotropy (cf. Tables  I  and 11) is the worst choice for discrete diffusivity for that method. A 
similar  property  holds for SUPG  with ,B = 

The series of figures in this section  also  provides  information  concerning the error  in  the 
discrete  diffusivity  relative to  its continuum  counterpart for each  method. As suggested by the 
anisotropy discussion above, this  error  is  dependent  on wavenumber as well as propagation 
angle. A quantitative measure of the discrete diffusivity errors is presented  in  Tables VI1 and 
VIII. As with <a, the discrete  diffusivity  errors, €5, generally  increase  with  increasing  2Ax/X, 
peaking at  the Nyquist  limit.  In terms of the  metric,  the y = 1/2 results  minimize  diffusivity 
errors  relative to  the unit  aspect ratio cases for all the methods.  Finally, it is evident from 
a method-to-method  comparison of that  CVFEM-M, minimizes  errors,  irrespective of y. 
Note that  the  SUPG  and SUCV semi-discretizations yield  by far the worst  discrete diffusivity 
error  (in terms of g )  relative to  the other  semi-discretizations,  irrespective of aspect  ratio. 
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90 90 

a) 
270 

Figure 16. Non-dimensional  discrete diffusivity for the consistent  mass  Galerkin  finite  element  method 
with a) y = 1 and b) y = 1/2. 

90 90 
2Mh 2Mh 

'. ..., - . -- "' -..-___.I __ //' 

a) 
270 270 

b) 

Figure 17. Non-dimensional  discrete  diffusivity (&/cy; radial) as a function of f? (azimuthal) for 
consistent  mass  matrix  finite  element  method  SUPG  with Popt with  a) y = 1 and b) y = 1/2. 
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90 90 
2hXlh 

0 

270 

Figure 18. Non-dimensional  discrete  diffusivity (&/a; radial) as a function of 0 (azimuthal) for 
consistent  mass  matrix  finite  element  method SUPG with p = 1/2 with a) y = 1 and b) y = 1/2. 

Figure 19. Non-dimensional  discrete  diffusivity for the consistent  mass  control  volume  finite  element 
method  with a) y = 1 and b) y = 1/2. 
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90 
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90 

Figure 20. Non-dimensional  discrete  diffusivity (6/cy; radial) as a function of 0 (azimuthal) for 
consistent  mass  matrix  control volume  finite  element method  SUCV  with Po,t with  a) y = 1 and 

b) y = 1/2. 

1 .o 
0.8 
0.6 
0.4 
0.2 
0.0 

18 

Figure 21. Non-dimensional  discrete  diffusivity (&/a; radial) as a function of 0 (azimuthal) for 
consistent  mass  matrix  control volume  finite  element method SUCV with P = 1/2 with a) y = 1 

and b) y = 1/2. 
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90 90 

270 270 

Figure 22. Non-dimensional  discrete diffusivity for the finite  difference method (FDM) with  aspect 
ratios of a) y = 1 and b) y = 1/2. 

270 270 

Figure 23. Non-dimensional  discrete  diffusivity (&/cy; radial) as a function of 0 (azimuthal) for the 
nodecentered  finite volume method  with second order  gradient  approximation  and  consistent  mass 

matrix  with  a) y = 1 and b) y = 1/2. 

Copyright @ 2000 John Wiley & Sons, Ltd. 
Prepared using fldauth.cls 

Int. J .  Numer.  Meth.  Fluids 2000; 00:1-6 



24 T.E. VOTH, ET AL. 

II ~6 as a function of 
2AxJX /I /I 

Method 0.0 I 0.2 0.4 1 0.6 I 0.8 I 1.0 
2.82e-2 0.0 I 5.78e-3 1 2.24e-2 1 4.38e-2 I 4.35e-2 1 5.07e-2 FEM-M, 

C 6  
- 

[1 CD-M, ( 1  0.0 1 1.19e-2 I 5.21e-2 1 1.38e-1 I 3.22e-1 I 7.60e-1 11 1.81e-1 

Table V.  Coefficient of Variation of discrete  diffusivity, cc, as a function  of 2Ax/X, and its average, 
q&, for the two-dimensional, y = 1, semi-discretizations  considered  here. - 

11 Method 

<& as a function of 
2Ax/X 

0.0 I 0.2 1 0.4 I 0.6 I ' 0.8 1 1.0 
L 

FEM-M, 
SUPG A p t  . 

4.94e-2 4.29e-2 1.01e-1 7.78e-2  3.73e-2 9.45e-3 0.0 
0.0 7.78e-3 

1.96e-2 9.27e-2 7.75e-3 2.34e-2 1.58e-2 4.56e-3 0.0 CVFEM-M, 
1.40e-1 4.48e-1 2.43e-1 1.34e-1  7.73e-2 2.37e-2 0.0 SUPG ,O = 1/2 
7.03e-2 1.84e-1 1.48e-1 7.29e-2 3.10e-2 

_ _  sucv Popt 3.86e-2 7.71e-2  7.76e-2  4.78e-2  2.30e-2 6.21e-3 0.0 
SUCV p = 1/2 

7.92e-2 2.30e-1 1.49e-1 8.47e-2  3.78e-2 9.46e-3 0.0 FDM 
1.14e-1 2.80e-1 2.01e-1 1.26e-1 7.76e-2 2.51e-2 0.0 

CD-M, 4.94e-2 1.79e-1 8.54e-2 4.48e-2 2.12e-2 5.58e-3 0.0 

Table VI. Coefficient of Variation of discrete  diffusivity, <&, as a function of 2Ax/X, and its average, 
qc, for the two-dimensional, y = 112 semi-discretizations  considered  here. - 

3.3. Artificial Diffusivity 

This section examines artificial diffusivity associated  with  our two-dimensional semi- 
discretizations. As noted  in Part  I, artificial diffusion may be added  deliberately (e.g. 
SUPG/SUCV) or be a by-product of the discretization (e.g. first-order  upwind). While in 
general not a desirable  feature of a method, artificial diffusivity can  be used to stabilize a 
discretization scheme. In  terms of artificial diffusivity, stabilization is achieved through  the 
annihilation  (damping) of numerical artifacts  such  as high-frequency dispersion errors in under- 
resolved convection-dominated problems. In  this light, an ideal artificial diffusivity function for 
either one- or two-dimensional discretizations would only be active in the high frequency part of 
the discret  spectrum,  near the Nyquist  limit for example,  and be negligible otherwise, going to 
zero at  the long wavelength limit. For two-dimensional discretizations, it is also desirable that 
the artificial diffusivity have an angular  variation similar to  the angular  variation observed 
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E, as a  function of 
2Ax/X 

Method 0.0 I 0.2 I 0.4 I 0.6 I 0.8 I 1.0 - 

Tal de VII. RMS discrete diffusivity error, E&,  as a function of 2Ax/X, and its average, E,  for 
two-dimensional, y = 1 semi-discretizations  considered  here. 

E, as a  function of 

the 

SUCV p = 1/2  ( 1  0.0 I 7.96e-2 1 2.37e-1 I 3.64e-1 I 4.25e-1 I 4.43e-1 1 1  2.65e-1 
1 1  0.0 I 1.79e-2 I 6.92e-2 I 1.48e-1 I 2.43e-1 I 3.46e-1 1 1  1.30e-1 
I1 I I 

CD-M, 1 1  0.0 I 1.64e-2 I 6.44e-2 I 1.38e-1 I 2.19e-1 I 3.05e-1 1 1  1.18e-1 

Table VIII. RMS discrete  diffusivity error, E G ,  as a function of 2Ax/X, and its average, C T ,  for the 
two-dimensional, y = 1/2 semi-discretizations considered here. 

in the phase  error so that high-frequency dispersion  errors  are  damped at  the same rate, 
regardless of propagation  direction. 

This  section begins with  a  presentation of the analytic expressions for the non-dimensional 
artificial diffusivity, presented in  terms of l/Pyt (= 2aaTt/cA2), for all the semi-discrete 
methods considered. A summary of the artificial diffusivity results in terms of polar  plots and 
error  metrics follows. 

Artificial Dzffuusivity Formulae As was the case for several of the previously discussed two- 
dimensional discrete  phase  speed and diffusivity formulae, the two-dimensional formulae for 
artificial diffusivity for SOU, TOU, Fromm, and QUICK can be  written  in  the form, 

2Qart - = (AX COS e) cos2 6 (kAz  cos e) 
C 

+ (AysinO)sin28 F;Z,(kAysinO)  (24) 
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where F:;ft (6) denotes the dimensionless one-dimensional  formula for artificial  diffusivity as 
given in  Table VI11 of Part  I.  In  terms of the Pyt defined previously, the formula  becomes 

1 
- = cos3 6F:Et (SAX cos e )  + y sin3 (ykAx sin e)  
PZrt 

When 8 = e* = arctan ( l /y )  (i.e. waves are  propagating  perpendicular to mesh diagonals) 
Eq.(25)  reverts to  the one-dimensional version with  an effective mesh spacing (AxcosB*), 

Note that Eq. (26)  also  includes the effective grid  spacing  in the definition of an effective Peclet 
number, PZTt cos 8*. 

The remaining  schemes  do  not have as simple  a form as Eq. (25);  these  include the  LSR 
schemes, SUPG  and  SUCV. Dimensionless artificial  diffusivity for the LSR(-1) scheme is, 

Along the  coordinate directions this reduces to  the artificial diffusion formula for SOU. The 
two-dimensional artificial diffusion formula for LSR(0) is 1/2 times the formula for LSR(-1). 
Along coordinate  directions the LSR(-1) scheme reduces to  the one-dimensional form which 
is,  incidentally,  also  Fromm’s  method. 

The artificial  diffusivity for SUPG  and SUCV is given by: 

in terms of the definitions in Eq. (19) and  the symbol for the mass matrix, M ( 0 )  given in 
Table  I of Part I. The similarity of the various terms to  the one-dimensional version is clear 
(see Table VI11  of Part  I).  The formulae  revert to  the corresponding  one-dimensional  formulae 
along the coordinate  directions. 

Artificial Diflusiuity Results 

The artificial diffusivity results for the two-dimensional  semi-discretizations are presented in 
Figures 24 to 30. Figures (a)  and  (b) for each method  present dimensionless artificial diffusivity, 
l/Pzrt, for grid  aspect  ratios of y = 1 and  1/2, respectively. Dimensionless artificial diffusivity 
curves are  plotted for 2Ax/X = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. 

All the  methods show quarter-  and  half-symmetry for the y = 1 and 1/2  aspect  ratio cases 
respectively - consistent  with the  symmetry of the underlying  spatial  grid.  Additionally, it 
is clear that  the artificial diffusion functions  in  general  display more anisotropy than  the 
other  dispersion  and diffusion relations.  This  anisotropy  can  be  understood, at least  in part, 
by considering  schemes  characterized by Eq. (25).  Although the remaining schemes (i.e. LSR, 
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SUPG  and SUCV) incorporate  cross  terms  (as  noted  in  the  previous  discussion)  their  behavior 
may  be at least  partially  explained  in  terms of the following discussion. 

With  the obvious  exception of FOU,  the one-dimensional  functions (F:Et) provide 
significant  artificial diffusion only at  short wavelengths  and  very little at  long  wavelengths  (see 
Part  I).  The reduced effective grid  spacing  (AxcosO*) in Eq. (26) accentuates  this  spectral 
character of the one-dimensional  artificial  diffusivity  functions. The (directionally  dependent) 
effective grid  spacing skews the range of the artificial  diffusivity  functions  toward the long wave 
spectrum. For example, for y = l / 2  waves oriented  along O = 6* = arctan (2) will experience 
artificial diffusivity of the form (Eq.  (26)) 

in which the formula is purposely  scaled in terms of PzTt, as it  appears in the plots. Thus, 
the artificial  diffusivity  along this direction is l/& of the one-dimensional  function  evaluated 
over the reduced wavenumber range, 0 5 2Ax/X 5 l/&; thus, artificial  diffusivity is much 
reduced  in this direction  as  compared to the horizontal  direction. However, the phase  error 
in this direction will also be less relative to  the horizontal  direction  (see Eq. (7)), therefore 
much less artificial diffusivity is needed  in this direction.  Indeed, the figures demonstrate that 
artificial  diffusivity is generally  maximized along the  x  and y-coordinate  directions when y = 1, 
and along the x-coordinate  direction for y = 1/2. Recall that these  directions  correspond to  the 
worst  phase  speed  accuracy for each of these  aspect  ratios. For methods  characterized by Eq. 
(25),  artificial  diffusivity is generally minimized along the 8 = 8* direction,  corresponding to 
the best  dispersion  accuracy for those  same  methods.  Clearly, the anisotropy of the artificial 
diffusivity is consistent  with the anisotropy of the concomitant  dispersive  behavior. Hence, 
coefficient of variation is not an  appropriate  metric for comparing  methods  and is not  shown. 

The series of figures in this section  provides  information  concerning the  magnitude of the 
artificial  diffusivity of each  method. A quantitative measure of the dimensionless integrated 
(over orientation  and  wavenumber)  artificial  diffusivity is presented  in  Tables IX and X for 
the y = 1 and 1/2 aspect ratio cases,  respectively. All but  the  FOU semi-discretizations 
demonstrate  generally  increasing  artificial  diffusivity,  in  terms of the  metric,  with 
increasing  wavenumber. As with the one-dimensional  results, FOU exhibits  dimensionless 
artificial  diffusivity which decreases with wavenumber. In  terms of the E,,t metric,  the FOU 
and  LSR(-1)  methods show the  greatest  amount of damping while the QUICK scheme produces 
the least  artificial  diffusivity as measured in this  metric. 
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90  90 

Figure 24. Non-dimensional  artificial  diffusivity ( l / P y t ;  radial) as a function of 0 (azimuthal) for 
consistent  mass  matrix  finite  element  method SUPG with Popt for a) y = 1 and b) y = 1/2. 

90  90 
2 W h  

270 
4 

270 

Figure 25. Non-dimensional  artificial  diffusivity ( l /Pzr t ;  radial) as a function of 0 (azimuthal) for 
consistent  mass  matrix  finite  element  method SUPG with p = 1/2 for a) y = 1 and b) y = l/2. 
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Figure 26. Non-dimensional  artificial  diffusivity (l/Pyt; radial) as a function of 0 (azimuthal) for 
consistent  mass  matrix  control  volume  finite  element  method  SUCV  with for a) y = 1 and b) 

y = 1/2. 
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Figure 27. Non-dimensional  artificial  diffusivity (l/Pyt; radial) as a function of 0 (azimuthal) for 
consistent  mass  matrix  control volume  finite  element method  SUCV  with /? = 1/2 for a) y = 1 and 

b) y = 1/2 (right). 
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Figure 28. Non-dimensional  artificial  diffusivity ( l / P z T t ;  radial) as a function of 0 (azimuthal) for the 
first-order  upwind  (FOU)  semi-discretization.  Results for aspect  ratios of a) y = 1 and b) y = 1/2 are 

shown. 
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Figure 29. Non-dimensional artificial diffusivity ( l / P : T t ;  radial) as a function of 0 (azimuthal) for the 
second-order  upwind  (SOU)  semi-discretization. Results  are shown for a) y = 1 and b) y = 1/2. The 
figure  also  depicts  artificial  diffusivity for TOU,  QUICK,  and Fromm’s method,  with a scaled radial 
coordinate, see Eq. ( 2 5 )  and  Table VI11  of Part I. The plots  show 3/PZTt for TOU, 4/PzTt for QUICK, 

and 2/PzTt for Fromm’s method. 
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Figure 30. Non-dimensional  artificial diffusivity (1/Py'; radial) as a function of 0 (azimuthal) for 
the least  squares  reconstruction  method,  LSR(-1).  Results for a) y = 1 and  b) y = 1/2 are shown. 
The figure  also  shows 2/PZTt for the LSR(0)  least  squares  reconstruction  method,  i.e.,  the  artificial 

diffusion for LSR(0) is one-half that of LSR(-l), see Eq. (25) and Table VI11 of Part I. 

n cart as a function of 
2AxIX I/ 

Method I 1.0 I 0.8 I 0.6 I 0.4 I 0.2 0.0 - 
&art 

SUPG on,,+ 1.69e-1 1 5.29e-1 I 3.48e-1 I 1.57e-1 I 6.03e-2 I 1.40e-2 0.0 
Method 

1.57e-1 3.75e-1 3.14e-1 1.81e-1 8.06e-2  2.04e-2 0.0 sucv on,+ 
2.39e-1 9.13e-1 4.36e-1 1.92e-1 8.66e-2 2.47e-2 0.0 SUPG P = 1/2 
1.69e-1 5.29e-1 3.48e-1 1.57e-1 6.03e-2 1.40e-2 0.0 SUPG Popt 

1 .o 0.8 0.6 0.4 0.2 0.0 - 
&art 

SUPG P = 1/2 2.39e-1 11 9.13e-1 4.36e-1 1.92e-1 8.66e-2 2.47e-2 0.0 
, .,y" 

sucv on,+ 1.57e-1 11 3.75e-1 3.14e-1 1.81e-1 8.06e-2  2.04e-2 0.0 
1 

SUCV P = 1/2 

5.13e-1  7.68e-1 8.58e-1 7.42e-1 4.46e-1 1.33e-1 0.0 sou 
6.92e-1 4.26e-1 5.50e-1  6.69e-1  7.67e-1 8.32e-1 8.55e-1 FOU 

4.45e-1 6.50e-1 2.33e-1 " 2.39e-1 1.19e-1 3.60e-2 0.0 
, -r- 

L 

TOU 0.0 
1 2.56e-1 3.84e-1 4.29e-1  3.71e-1 2.23e-1 6.67e-2 0.0 F'romm's 
I 1.71e-1 2.56e-1  2.86e-1  2.47e-1 1.49e-1 4.44e-2 

_ _  ~ 

L Y 

QUICK 

6.09e-1 8.63e-1 1.00 8.95e-1 5.52e-1 1.68e-1 0.0 LSR.(-1) 
3.05e-1 4.31e-1 5.00e-1 4.47e-1 2.76e-1  8.39e-2 0.0 LSR(0) 
1.28e-1 1.92e-1 2.15e-1 1.86e-1 1.12e-1 3.34e-2 0.0 

Table IX. RMS  value of the dimensionless artificial diffusivity, as a function of 2Ax/X, and  its 
average, G, for the two-dimensional y = 1 semi-discretizations  considered  here. 
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n EaTt as a function of 
2AxlX /I 

Method 0.0 I 0.2 I 0.4 I 0.6 I 0.8 I 1.0 &art 
- 

SUPG Brio,,+ 1.12e-1 0.0 1 9.07e-3 I 3.98e-2 I 1.06e-1 I 2.34e-1 1 3.44e-1 

.. 
Fromm’s 

4.18e-1  6.82e-1 7.05e-1  5.89e-1  3.49e-1 1.04e-1 0.0 LSR(-l) 
2.09e-1  3.41e-1 3.53e-1  2.95e-1 1.74e-1  5.18e-2 0.0 LSR(0) 
9.09e-2  1.40e-1  1.52e-1  1.30e-1  7.83e-2  2.34e-2 0.0 QUICK 
1.82e-1  2.81e-1 3.04e-1  2.61e-1 1.57e-1  4.68e-2 0.0 

Table X. RMS value of the dimensionless  artificial diffusivity, cart, as a function of 2Ax/X, and  its 
average, G, for the two-dimensional, y = 112 semi-discretizations. 
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4. SUMMARY AND CONCLUSIONS 

4.1. Summary 

In  this two-part  paper, we have presented  a  multi-methods comparison of a  variety of popular 
discretization schemes in  the context of linear advection-diffusion. As the  starting point for 
this multi-methods analysis and comparison, we chose to  apply Fourier analysis  because  it 
provides a general methodology that is  capable of analyzing  multiple  methods  in a single 
mathematical framework while providing a  great  deal of information and insight into each 
method.  In  this work, Fourier analysis  has been used to  investigate the following aspects 
of each numerical method: a) numerical dispersion, i.e., phase  and  group velocity errors, b) 
the spectral behavior of the discrete diffusivity, c) the limiting behavior of short wavelength 
information for both wave propagation  and diffusion, d)  the identification and characterization 
of artificial diffusivity introduced  via upwinding, e) grid bias  errors in phase,  discrete diffusivity 
and artificial diffusivity, and f )  asymptotic convergence properties. 

The results of this analysis show that  there  are a number of competing  methods that  are 
all of second-order accuracy or better  and  that should perform adequately in the  hands of an 
experienced analyst. While there  is  no single best  method,  there  are  at least two methods that 
are clearly the worst. The first-order upwind method is excessively diffusive, and the second- 
order upwind method  is  extremely dispersive - as  are  the  FEM-SUPG  and CVFEM-SUCV 
methods at  low Peclet  number. 

The Galerkin  finite element method  and  its streamline-upwind derivatives exhibit  super- 
convergent behavior in  terms of dispersive behavior, i.e., phase and  group accuracy. The 
only other  method considered that exhibited this behavior is the third-order upwind scheme. 
Analysis of several CVFEM  methods  and  their  streamline-upwind derivatives revealed that 
their behavior is strictly second-order in all of our  metrics. While it  appears  that  these 
methods yield good phase and  group accuracy when the accuracy  requirements  are  relaxed, 
the resolution requirements for an acceptable 1% error  in  phase  and  group is more than twice 
that of the finite element method  in  a one-dimensional sense (greater  than a factor of eight  in 
three  dimensions). 

The deleterious effects of ad-hoc mass-lumping was demonstrated  (again) for the  FEM  and 
CVFEM  formulations.  In  comparison, the  FDM  and  FVM formulations, by default,  incorporate 
a  diagonal  mass matrix, i.e., they come equipped  with  a  built-in  lumped  mass  approximation 
in which the nodal  time  derivatives are decoupled. In  terms of advection-diffusion, the FDM 
and  FVM schemes represent the time-dependent  terms by an equivalent lumped-capacitance. 
In  contrast,  the consistent  mass matrix inherent  in the  FEM/CVFEM formulations  represent 
these  time-dependent terms by a  distributed  capacitance that more accurately reflects the 
physical situation  in the continuum. As a consequence, the lumped-capacitance  representation 
inherent  in the  FDM  and  FVM schemes yield schemes that generally under-perform in  terms 
of phase and  group speed  relative to  their  consistent-mass FEM/CVFEM  counterparts. 

Several of the finite difference and finite volume methods show reasonable dispersion 
characteristics, however it should be  noted that, except for the first-order upwind scheme, 
these  methods all involve higher-order advection operators, i.e. they involve more than  just 
the neighboring grid  points.  These  methods are more difficult to  deal  with on  unstructured 
meshes and  many  current implementations use extrapolation of variables  outside the control 
volume (e.g. Jessee and Fiveland [3]). The effect of this  extrapolation  on  the resulting  accuracy 
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may be a concern and could be assessed using the methods  outlined in this  paper. 
In  terms of numerical performance for pure diffusion problems, the CVFEM scheme 

introduces  minimal  error and anisotropy in two dimensions. In  contrast, the stabilized schemes, 
FEM-SUPG and CVFEM-SUCV,  may be optimized for phase and group accuracy, but when 
tuned for phase accuracy, they  do  not perform well in  terms of the discrete diffusivity, which 
exhibits significant anisotropic  behavior. This reinforces the notion that  there is no single best 
method that spans all problem classes. 

4.2. Conclusions 

The results of this first step in a  multi-methods comparison lead us to conclude that: 

0 There is no single best  method,  but  there  are  a  number of competing  methods that  are 
of second-order accuracy or better  and  that should perform adequately in the  hands of 
an experienced analyst. However, the grid resolution requirements to  attain a  certain 
level of error  can  be vastly different. 

0 A single numerical method that can  optimally solve all problem classes with equivalent 
accuracy and robustness  does  not  exist  in the set of methods considered, but  the selection 
of an  optimal numerical method  must  still  be  made based on the problem to be solved. 
The results  presented  here will hopefully provide some guidance  in the selection process. 

0 The  spatial coupling of time-derivatives yields super-convergent phase  and  group 
accuracy for the finite element methods,  and  as a general rule improves the phase  and 
group  accuracy of the CVFEM  methods,  albeit  without the super-convergent behavior. 

0 The two-dimensional dispersive properties of many of the methods  may  be  characterized 
by a simple generalization relative to  the corresponding one-dimensional behavior. 

0 At the hyperbolic limit, the accurate  propagation of a signal depends on providing 
adequate resolution for all wavelengths present  in the signals. Dispersive errors will occur 
for all of the methods considered here. 

0 Although  not  often discussed, accurate modeling of diffusion also requires providing 
adequate resolution for all wavelengths present in the signals. Many  methods  exhibit 
reduced  apparent diffusivities for short-wavelength signals, i.e., near the grid Nyquist 
limit. 

0 The artificial viscosity, in  general,  damps the under-resolved parts of a  signal - the 
specific spectral  characteristics have been shown to  be a  function of the method. All 
of the higher-order methods  tend  to  introduce minimal artificial diffusivity through the 
mid-range of the discrete  spectrum  with  a  peak  occurring just before the Nyquist limit 
for the grid. This behavior may be optimized to  deliver specific band-pass  properties that 
match  the dispersive properties of the method. However, to  our knowledge, this  type of 
matching  has  not been performed. 
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