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SUMMARY 

This  paper  is focused on a detailed  multi-methods  comparison of the  spatial  errors  associated  with 
finite  difference,  finite  element and  finite  volume  semi-discretizations of the  scalar advection-diffusion 
equation.  The  errors  are  reported in terms of non-dimensional  phase  and  group  speed,  discrete 
diffusivity,  artificial  diffusivity, and  grid-induced  anisotropy.  It  is  demonstrated  that  Fourier  analysis 
provides  an  automatic process for separating  the  spectral  behavior of the  discrete  advective  operator 
into its symmetric  and  skew-symmetric  components.  For  each of the  numerical  methods  considered, 
asymptotic  truncation  error  and  resolution  estimates  are  presented for the  limiting  cases of pure 
advection  and  pure  diffusion.  It  is  demonstrated  that  streamline  upwind  Petrov-Galerkin  and  its 
control-volume  finite  element  analogue,  the  streamline  upwind  control-volume  method,  produce  both 
an  artificial  diffusivity  and a concomitant  phase  speed  adjustment  in  addition  to  the  usual  semi-discrete 
artifacts  observed  in  the  discrete  phase  speed,  group  speed  and  diffusivity.  The  Galerkin  finite  element 
method  and  its  streamline  upwind  derivatives  are  shown  to  exhibit  super-convergent  behavior  in  terms 
of phase  and  group  speed  when a consistent  mass  matrix is used  in the  formulation.  In  contrast,  the 
CVFEM method  and  its  streamline  upwind  derivatives yield strictly  second-order  behavior.  In  Part 
I1 of this  paper, we consider  two-dimensional  semi-discretizations of the advection-diffusion  equation 
and  also  assess  the  affects of grid-induced  anisotropy  observed  in  the  non-dimensional  phase  speed, 
and  the  discrete  and  artificial  diffusivities.  Although  this work can  only  be  considered a first step in 
a comprehensive  multi-methods  analysis  and  comparison,  it  serves to  identify  some of the  relative 
strengths  and  weaknesses of multiple  numerical  methods  in a common  analysis  framework. 
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1. INTRODUCTION 

Numerical methods for the solution of partial differential equations have evolved to  the point 
where the “end-user” is faced with choosing from a  plethora of formulations, e.g., finite 
difference, finite volume or finite element, upwind or  stabilization  techniques,  structured 
or unstructured  grids, mesh-full or mesh-free, etc.  Each choice has  its individual  strengths 
and weaknesses. In order t o  understand the differences and similarities between competing 
methods,  an initiative to  perform a  multi-methods comparison based on numerical and 
computational  performance  has  been  launched. 

The comparison of numerical methods  can  be  based  on  a  number of metrics such as 
truncation  error,  rate of convergence, and dispersive and diffusive behavior. Such a comparison 
between dissimilar methods is difficult because it may not  be possible to select criteria that 
“fairly” represent each method. For example, the best way to  compare  finite difference methods 
that  are based on Taylor series with  finite element methods that may be best represented by 
errors  measured in the energy  norm  is  an  open  question. 

As a first step  in  this  multi-methods analysis and  comparison, we chose to  apply Fourier 
analysis because it provides a general methodology that is capable of analyzing multiple 
methods  in  a single mathematical framework while providing a  great  deal of information 
and insight into each method.  In  this work, we use Fourier analysis t o  probe the following 
aspects of each method: a) numerical  dispersion,  i.e., phase and  group velocity errors, b) 
apparent, i.e., discrete, diffusivities that  are wavelength dependent - spatial  discretization 
introduces this often-ignored error, even though  many schemes exhibit under-diffusive behavior 
a t  short-wavelengths, c)  the limiting behavior of short wavelength information for both wave 
propagation and diffusion, d)  the identification and characterization of artificial diffusivity 
introduced  via upwinding, e) grid bias  errors in phase,  group,  discrete diffusivity and artificial 
diffusivity, and f )  asymptotic convergence properties and resolution requirements. 
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GENERALIZED NEUMANN  ANALYSES: PART 1 3 

Fourier analysis provides the ability to identify and characterize the artificial diffusivity 
of upwind methods because, in effect, it  automatically segregates the discrete  advection 
operators  into dissipative  symmetric  and  non-dissipative skew-symmetric parts.  In  addition, 
this  technique also provides insight into  the  asymptotic convergence of the methods  without 
the ambiguities  associated  with the choice of a single norm for multiple  methods. 

For this effort, a  variety of finite difference, finite volume and finite element  methods 
are considered. Each  method is considered on both one-dimensional and two-dimensional 
periodic Cartesian  grids.  Attention  has been restricted to  the following advective schemes: 
first through  third-order upwind and second-order centered differences, QUICK,  and Fromm’s 
method.  Here, Fromm’s method is considered in a semi-discrete form,  i.e., in the limit as 
At 4 0, for the purposes of analysis rather  than  in  its original  fractional-step form[l]. For the 
finite element methods  both Galerkin (FEM)  and streamline-upwind  Petrov-Galerkin (FEM- 
SUPG)  formulations are considered. The finite volume methods  include the control-volume 
finite element method  (CVFEM)  with  and  without  the stream-line upwind analogue of SUPG 
known as SUCV (CVFEM-SUCV) [a, 31. In  addition, two  finite volume schemes derived using 
least-squares  gradient  reconstruction (LSR) are also considered. 

Background  and  Historical  Perspective 

In  general, the application of discrete  solution  methods to hyperbolic  partial differential 
equations,  e.g.,  pure  advection,  can  result in solutions that  are dispersive even though 
the physical model for  wave propagation  is non-dispersive. Dispersion errors  are  typically 
characterized by the differences between the  apparent, i.e.,  numerical,  phase  and  group  speed 
of waves and  their exact  counterparts. 

In  the context of pure  (linear)  advection, the phase  speed is the speed at which individual 
waves propagate.  In the absence of dispersion, this is simply the advective speed.  In the discrete 
sense, the phase  speed  is  a  function of the frequency or wavelength of the propagating wave. 
Therefore,  phase  error  may be viewed as a  measure of the influence of numerical dispersion on 
the  apparent advective  speed  relative to  the  true advective  speed. 

In  contrast  to  the phase  speed, the group  speed  describes the propagation of wave packets 
that  are comprised of short wavelength signals modulated by a slowly varying, longer 
wavelength envelope. Because the energy  associated  with  a wave packet travels  with the packet, 
the group  speed is often referred to  as  the “energy” velocity. The group  speed is also referred 
to  as the speed of modulation. For a non-dispersive medium the phase  and  group  speed are 
identical. 

In  discrete  advection, the group  speed  may be used to  study  and explain the propagation of 
short wavelength signals that are  typically  2Ax  in wavelength where Ax is the characteristic 
mesh spacing. Vichnevetsky [4, 5, 61 has  demonstrated that spurious 2Ax oscillations, that  are 
induced by rapid changes in mesh resolution and  at physical boundaries,  propagate a t  a  group 
speed  associated  with  a 2Ax wavelength. 

Phase  and  group speed  errors  represent some of the most  constraining numerical errors 
associated  with the simulation of advection dominated processes (see also Baptista,  et al. [7]). 
The  accurate simulation of advection dominated processes using discrete numerical schemes 
hinges upon having a clear understanding of the constraining numerical errors,  and sufficient 
computational resources to  effect solutions at the requisite grid scale. Examples of this may 
be seen when attempting  to compute  turbulent flow fields via  direct numerical simulation 
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4 M.A. CHRISTON, ET AL. 

(DNS) or large  eddy  simulation (LES). Controlling the dispersive  errors,  e.g.,  phase  speed 
error, t o  within 5% for a  first-order  hyperbolic  equation  requires  approximately 11 to 12 cells 
per wavelength when using traditional finite difference or  lumped-mass  finite  element  methods 
(see  Table 2.6.2 in  Gresho  and  Sani 181). Thus,  the simulation of advection  dominated  problems 
is limited by the wavelength that  the grid  can  accurately  represent. A failure to respect the so- 
called grid  Nyquist  limit  can  introduce  deleterious  aliasing effects that corrupt  the  simulation 
fidelity. 

In  contrast to  the phase  and  group  errors, the application of a  discrete  method to the diffusive 
part of the advection-diffusion equation yields a discrete diffusivity that is  not  equivalent to 
the prescribed diffusivity in the  partial differential  equation. The discrete  diffusivity  exhibits 
wavelength dependent  behavior,  and  in  multiple  dimensions is directionally  dependent. The 
fact that signals diffuse at different rates based  on wavelength is frequently overlooked, but 
explains why some methods  may  appear to be under-diffusive in certain  circumstances. We 
have found little discussion in the  literature regarding the wavelength-dependent  behavior of 
the discrete diffusivity. However, the work by Jansen,  et al. [9], has  dealt  with  improving the 
accuracy of low-order stabilized  finite  elements by including  a  reconstructed  residual-based 
diffusion operator. Unfortunately, we have not  yet  analyzed this variant of Galerkin/Least- 
Squares  formulation. 

The use of a generalized Fourier  analysis to assess dispersive  and diffusive errors is not 
new and  has been used by numerous  researchers to characterize the performance of numerical 
methods. The effects of consistent,  lumped  and  higher-order  mass  matrices  on the phase  speed 
for linear  and quadratic finite  elements were investigated by Belytschko  and Mullen [lo] for 
wave propagation  in  a  linear  elastic  medium  in one dimension.  Here, it was verified that 
the period  elongation  errors  associated  with  a  trapezoidal  rule time  integrator  can  be  nearly 
matched  with the leading  phase  errors  introduced by a consistent  mass matrix. Similarly, the 
period  shortening  associated  with  central differences in time  can  be  matched  with  the lagging 
phase  errors  associated  with  mass  lumping for linear  elements.  This  compensatory  interaction 
between the time  integrator  and  mass  matrix yielded the class of methods  typically  referred 
to as  “matched”  methods  found  in many explicit solid dynamics codes today. 

Vichnevetsky et al. [ll, 12,6] have investigated the dispersive nature of both finite difference 
and  finite  element  methods for the first-order wave equation.  In Reference [13], the dispersive 
errors  introduced by nonuniform  grid  spacing  and  “hard”  boundaries are discussed,  and 
the possibility of using  artificial  viscosity to  damp these  short wavelength spurious waves 
is investigated.  Similar  analysis  techniques have been applied to wave propagation in periodic 
domains [14]. Trefethen [15] has  considered the role of group velocity in  understanding  the 
propagation of wave packets, the generation of parasitic waves at interfaces,  and  stability.  Here, 
the influence of group velocity in two-dimensional finite difference discretizations  with uniform 
aspect  ratio was considered.  Karni [16] has characterized the group  speed  errors  associated  with 
symmetric upwind schemes for pure  advection,  i.e.,  a  first  order wave equation. 

Fourier  analysis  has  also  been  applied to finite  element  discretizations  in  order to understand 
the dispersive nature of elastic wave propagation  in  bars  and locking phenomena in beams [17]. 
This analysis  technique was applied by Park  and Flaggs [18] in an effort t o  understand  and 
ameliorate locking phenomena  in C” plate  elements. Alvin and  Park [19] have also used Fourier 
analysis to tailor  the frequency  response of beams  and  bars  discretized  with the finite  element 
method. 

More recently,  Shakib  and Hughes [20] have applied  Fourier  analysis to  the space- 
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GENERALIZED NEUMANN  ANALYSES: PART 1 5 

time  Galerkin/Least-Squares (GLS) method for advection-diffusion problems. Harari  and 
Hughes[21] present the phase  error  associated  with the GLS  discretization for the second- 
order wave equation  in  a finite domain. Deville and Mund [22] have used Fourier  analysis to  
investigate the spectral behavior of the iteration  matrix for finite element preconditioning. 
Thompson  and  Pinsky [23] extended the concepts of Fourier  analysis  in  order to  treat p- 
version finite element discretizations.  This work provides practical guidelines for the number 
of elements  per wavelength in  terms of the  spectral order. Similarly, Grosh  and  Pinsky [24] have 
applied Fourier dispersion analysis to fluid loaded  plates for structural acoustics simulations. 
Christon [25] considered the influence of the finite element mass matrix on the dispersion 
characteristics of second-order wave equation for acoustic  fluid-structure  interaction.  Christon 
and Voth [26, 271 have applied von Neumann  analyses to assess the numerical performance 
of reproducing kernel semi-discretizations  in one and two-dimensions and considered both 
hyperbolic and parabolic  partial differential equations. 

In the ensuing discussion, $2 presents an overview of the generalized Fourier analysis used 
in  this  study  to  compute  the phase and  group speed,  discrete and artificial diffusivity, and 
truncation  error for the semi-discretizations. In  $3, the phase  and  group  speed,  discrete 
diffusivity, and artificial diffusivity results are presented for the one-dimensional finite element, 
control-volume finite element, and finite difference/volume semi-discretizations.  A complete 
summary of the one and two-dimensional results  may be found in $3 in Part I1 of this  paper. 

2. FORMULATION and ANALYSIS 

The  starting point for the Fourier analysis is the linear advection-diffusion equation, 

Here, T is the  temperature (or  any  other passive scalar), c = ui+'uj is the prescribed advective 
velocity, i and j are  unit vectors in the 5 and y-coordinate  directions respectively, and (u is 
the  thermal diffusivity. The advective velocity field is assumed to  be div-free, i.e., V . c = 0, in 
both  the continuous and discrete sense. For the ensuing  analysis, both  the advective velocity 
and  thermal diffusivity are  constant. 

Fourier analysis  can be applied to  spatially-discrete,  temporally-discrete, and fully-discrete 
(space and  time  are  both discrete)  systems. For our  purposes, we chose to  consider the one- and 
two-dimensional semi-discrete equations which also correspond to  the fully-discrete situation 
in the limit as At -+ 0. The semi-discrete form of Eq. (1) is 

MP + A(c)T + KT = 0, (2) 

where M is a generalized unit-mass  matrix, A(c)  is  the advection operator,  and K is the 
diffusivity operator. 

For a  typical  finite difference method,  the generalized unit-mass  matrix is simply the  identity 
matrix, I, and K is the  standard five-point difference representation of the Laplacian  operator 
(cf. Eq.  (65)). For the upwind methods, the advective  operator and mass matrix vary according 
to  the specific scheme under  consideration. 

For the finite element method, the generalized unit-mass matrix is 

M = 4Mc + (1 -  MI, (3) 
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6 M.A. CHRISTON, ET AL. 

where M, is the consistent  mass matrix, MI is the row-sum lumped  (diagonal)  mass matrix, 
and 0 5 q5 5 1. The  details for obtaining  the weak form of the advection-diffusion  equation 
and  the associated  mass,  advection  and diffusion operators  are well known (see for example 
Gresho  and  Sani [8]), and are not  repeated  here. The appendix  presents the stencils for the 
various  methods  analyzed  in this work. 

2.1. Fourier Analysis 

The Fourier  analysis  proceeds by choosing either  an  infinite  computational  domain or 
alternatively  a  periodic  domain.  In the ensuing  analysis,  a  “regular”  Cartesian  grid  is 
considered where the mesh spacing  in the  x  and y-coordinate  directions is Ax  and Ay 
respectively. This is illustrated in Figure l a  for a five-point finite difference stencil,  Figure 
l b  for a  patch of four  quadrilateral  finite  elements,  and  Figure IC for control-volume  finite 
elements. The wave propagation  direction is denoted by 8,  and the nodal  x  and y locations 
are given by x, = mAx,  and yn = n a y ,  with the aspect ratio, y = AyIAx. 

Remark.  The restriction to regular  grid  configurations  does  not  restrict the 
application of the generalized Fourier  analysis to only  grids  comprised of 
quadrilaterals. For example,  regular  arrangements of triangular  elements may be 
analyzed as in Mullen and  Belytschko [%I. 

A fundamental  solution to  the continuous  problem is selected for a fixed wavenumber or 
wavelength and placed on the  computational domain as shown in Figure 2. In  general, the 
wave number  vector k and velocity vector c need not  be  aligned, but  to simplify our two- 
dimensional  analysis, we assume the wave vector  and velocity vector are aligned. The response 
of the discrete  system,  discretized  via  finite differences, finite  elements,  etc., may then be 
computed  in terms of the grid  aspect ratio, mesh resolution,  wavenumber,  propagation  speed 
and  direction. The response of the discrete  system is wavelength dependent,  and is used to 
identify  and  characterize the phase  and  group  speed,  discrete  thermal diffusivity, artificial 
diffusivity, grid  bias,  and  asymptotic convergence rates. 

We note in passing that by casting the semi-discrete  equations  on  a  Cartesian  grid, the mass, 
advection  and  diffusivity  matrices have a  banded structure where the non-zero  entries in the 
matrices are  equal  along lines parallel to  the main  diagonal,  i.e., they  are Toeplitz  matrices. 

Proceeding  with the analysis  and following Vichnevetsky  and Bowles[4], we begin  with  a 
pure  advection  problem  where 

M - +A(c)T = 0,  { :} 
and, consider  a  sinusoidal trial solution of the form 

where k is the wave number  vector, k = ((kll is the wave number, = x,; f ynj, and 
L = G. Here, (m,n) corresponds to  the grid  location at x, = mAx and yn = n a y .  This  is 
a  solution to Eq.  (4)  provided that 

Copyright @ 2000 John Wiley & Sons, Ltd. 
Prepared using fldauth.cls 

Int. J .  Numer.  Meth.  Fluids 2000; 0O:l-6 



GENERALIZED NEUMANN  ANALYSES: PART 1 

I I 

I 
+ -  
I 
I 

7 

Figure 1. Propagation  direction: (a) on a finite difference grid; (b) on a 2x2 patch of a finite  element 
mesh; (c) on a control-volume  finite  element  mesh. 

where A ( k )  is the symbol  (also referred to as the spectrum).  The symbol is defined here as 

where A(c) and M are square  matrices  suitably  arranged to  multiply the vector, 

exP[Lk. X(m,n)I = b P [ L k f  X(I, l) l ,  exP[Lk. X(2,l)I . . . , 
expbk.  X(M,I)l , .  . . , exP[Lk. X(I ,N)l , .  . ., exP[Lk. X(M,N)11 T 9 

(8) 

and M and N are  the number of grid points in the x- and y-directions respectively. As 
noted by Vichnevetsky[4], exp[Lk.x(,,,)] are  the eigenvectors of the discrete  Toeplitz  operator 
M-l . A(c), and A ( k )  are  the corresponding eigenvalues. 

The solution to Eq. (4), found by direct  integration,  is 
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8 M.A. CHRISTON, ET AL. 

k 
I C 

X 

Figure 2. Fundamental  solution  with wavelength X, propagation  speed c,  wavenumber IC, and 
propagation  direction 0. 

where &(A) is the real part of the symbol, and I m ( A )  is the imaginary part. A similar equation 
is true for the continuous advection equation. So, as  demonstrated by Vichnevetsky[4], the 
sinusoidal trial  solutions,  with the proper  time-dependent coefficients, are solutions to  both 
the semi-discrete and  continuous  equations. Based on  this  fact,  the difference between the 
continuous and semi-discrete solutions  may  be  compared one wave number at a  time  in  order 
to  assess the artifacts  introduced by the spatial  discretization. 

dispersion. The semi-discrete solution does not decay with  time if 
For the pure advection problem, there  are two effects to  be considered: dissipation  and 

which can only be  true if Re(A(k)) = 0. In  this  situation,  the semi-discretization is said to  
be energy conserving. This is the case when A(c) is skew-symmetric and M is  symmetric. In 
either  case, when the amplitudes of the signal  do  not decay with  time, the semi-discretization 
is also referred to  as  neutrally dissipative. 

In  contrast,  there is amplitude decay when at  least some of the real eigenvalues are negative. 
That is, if R e ( a ( k ) )  5 0 for all k ,  and  Re(a(k)) < 0 for some of k ,  then  the amplitudes of 
the solution will decay in  time,  and  the semi-discretization is dissipative. The introduction of 
a  non-symmetric M can  result in a scheme that is dissipative even if A(c) is skew-symmetric. 
This  is  the  situation for both  FEM-SUPG  and CVFEM-SUCV. If R e ( A ( k ) )  > 0 for some k ,  
then  the amplitudes of the signal will  grow in time,  and  the semi-discretization is considered 
to  be unstable. 
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Remark. An alternative  approach to  the decomposition of the advection  operator 
into  symmetric  and skew-symmetric parts proceeds as follows. Given an  arbitrary 
advection operator, A, the symmetric (diffusive) part  is  Asym = 1/2(A + AT) 
and the skew-symmetric part  is Askew = 1/2(A - AT). Fourier analysis  can, of 
course, be  performed  with  these  operators directly. However, the Fourier analysis 
will automatically  perform an equivalent decomposition that yields the real and 
imaginary  components of the symbol, A ( k ) .  The  appendix presents the semi- 
discrete  operators  in  a stencil format  with the x and y-advection operators  split 
into symmetric and skew-symmetric components for all of the methods considered 
in  this  paper. 

When Re(&) = 0, i.e., the discretization is energy conserving, and  the only remaining 
numerical artifact  is the difference between the speed that signals propagate  in the continuous 
and  discrete sense. In  order to assess this effect, Eq.  (5) is written  as 

T k , ( m , n l ( t )  = ?k(O)exp[Lk(mAXcos6' + nAysin6 + Im(&k)  t / k ) ] .  (11) 

By inspection, the discrete,  or apparent advective velocity is 

which reveals the wavenumber dependence of the discrete advective or phase velocity. Thus,  it 
is clear that each wavelength will propagate at  its own unique velocity on the computational 
grid. 

In the ensuing discussion, the continuous  phase speed (or advective  speed)  is defined as 

c =  - w 
k' 

and represents the magnitude of the phase velocity vector c which is oriented  in the direction 
of the wave vector k. In the continuum, the phase velocity is simply the advective velocity, 
and  in  the discrete  sense, the  apparent phase velocity is 2. = G ( k ) / k ,  where G = Im(A(lc)). 

The group velocity, vg = ugZi + ug,j, often  referred to  as the energy velocity, describes how 
local disturbances that  are modulated by a longer-wavelength signal  propagate.  The group 
velocity is defined as 

where, k, = k cos(t9) and k, = ksin(6'). For a non-dispersive continuum the group velocity 
is simply the advective velocity, i.e., vgZ = u and ug, = u. In  the discrete  or dispersive case, 
the group velocity is  not always aligned with the wave vector, but  instead  has a  propagation 
direction defined by 

Q = arctan (2) , 

where f ig z  = di;l/dk,, and f i g ,  = dG/ak, are the components of the discrete  group velocity. 
Turning to  the complete advection-diffusion problem, and following Vichnevetsky and 

Bowles [4] and Mullen and Belytschko [28], a general solution to  Eq. (1) is developed in 
the following form, 

T(x,  y, t )  = A exp[Lk(x cos 6' + y sin 0) - u t  - k2at] .  (16) 
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10 M.A. CHRISTON, ET AL. 

Here, k denotes  the wave number,  the wave vector is k = k cos 0 i + k sine 3, and w is the 
circular frequency associated  with the advective  solution. The general  solution  in Eq. (16) 
incorporates  two  fundamental  solutions - one for the advective part,  and one for the diffusive 
part of the advection-diffusion problem  obtained by linear  superposition. 

Now, turning  to  the semi-discrete  case, the general  solution  may be written in terms of the 
grid-spacing as 

T,,,(t) = Aexp[Lk(mAxcosO + nAysin8) - LWt - k2&t], (17) 

where L;r is the discrete  wavelength-dependent  circular  frequency, 6 is the discrete wavelength- 
dependent diffusivity, and  the subscript k has been suppressed for notational convenience. 
After substitution  into  Eq. (2), and using the  appropriate stencils from the  appendix,  the 
result  may be segregated  into  its real and  imaginary  components yielding relationships for 
the discrete  circular frequency W and discrete diffusivity 6. For a detailed  example of this 
procedure for second-order  upwind, see Christon,  et  al. (291. 

2.2. Truncation Error 

There  is  a  relationship between Fourier  analysis and classical truncation error  analysis as 
pointed  out by Vichnevetsky and Bowles [4] (see pp. 24-26, pp. 103-108). We repeat  the salient 
points of this discussion here. 

Given a solution to  the one-dimensional continuous  advection  problem, T(x,t),  the 
truncation  error may  be  written  as 

i.e., T,(t) are  the values of T(x , t )  evaluated at  the discrete  points x,. 

discretizations considered in  this work can  be generalized as 
As demonstrated by Vichnevetsky and Bowles, the  truncation error for the semi- 

7 = CAxP (-> -+ H.O.T. P+lT 
dXP+l 

where C is a  constant  independent of the  data, grid  spacing  and  order of accuracy. 

neax kAx = 0 may  be seen by taking  the Fourier  transform of the  truncation  error. 
The direct  relationship between the  order of accuracy  and the “flatness” of the  phase  speed 

F ( 7 )  = --Lw(c - E)T(w,  t). (21) 

From this,  it  can  be seen that  the  truncation error is 

Z: - c C A X ~ ( W ) ~  + H.O.T. (22) 

and behaves like up near  kAx = 0 where p is the order of accuracy. In  the  ensuing discussion, 
we make use of this relationship to identify the order of accuracy for the advective and diffusive 
discretizations considered in  this work. 
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2.3. Semi-Discrete  Methods 

In  this work, a  variety of popular  finite difference, finite volume and finite element methods  are 
considered. The Fourier  analysis used to  develop the baseline methods comparison is  restricted 
to analysis  on  “regular”  Cartesian  grids - although we consider grids  with  non-unit  aspect  ratio 
in two-dimensions. In the Cartesian grid setting  many of the finite volume methods considered 
here  revert t o  familiar finite difference methods. 

The family of finite volume methods considered are,  in  general, developed for unstructured 
grids using a  combination of MUSCL[30] interpolation  with slope limiters  and  gradient 
reconstruction  methods to  model the convection terms.  Two  methods of gradient 
reconstruction are considered: application of the divergence theorem  and an un-weighted least 
squares  procedure [31]. Specifically, for the model problem under  scrutiny, the finite volume 
methods  are derived by  starting  with  the following semi-discrete equation  cast  on  a  Cartesian 
grid (see Figure l), 

aTm ,n AXAY- at + AYU (Tm+1/2,n - Tm-1/2,n) + AXV (Tm,n+1/2 - Tm,n-1/2) = 

The various finite volume methods  are derived by applying the generic MUSCL interpolation 
for convective terms, e.g., 

11, 
Tm+1/2,n = Tm,n + 5 [(I - ~)vTm,n . (rm+l,n - rm,n) + K(Tm+l,n - Tm,n)l  (24) 

where 0 5 11, 5 1 is a slope limiter,  and rm,n is the position vector. In  this work, the non- 
linear aspects of this  type of slope limiter are  not considered. Instead, the two  extrema for 11, 
are used, i.e., + = 0 and + = 1. The various finite volume methods  are derived for different 
combinations of the parameter K and  the  method of gradient  reconstruction to  compute VTi , j  

in the interpolation formula. 
For Cartesian  grids,  application of the divergence theorem yields a  central difference 

approximation for the cell gradients, which when substituted  into  the MUSCL interpolant 
results  in a variety of well-known higher order difference methods for 1c, = 1: second-order 
central-difference (CD, IE = l), second-order upwind (SOU, K = -l), F’romm [l] differencing 
(this  is the limit of Fromm’s fully discrete  method for At 4 0; K = 0), QUICK [32] ( K  = 1/2), 
and  a  3rd-order upwind method (TOU) also due  to Leonard [32] ( K  = 1/3). We also consider 
an ad-hoc method composed of CD  with  a “finite element like” consistent  mass matrix  that 
can be derived by assuming  a linear variation of the field variable within the control volume. 

We also consider two finite volume schemes derived using the unweighted least  squares 
reconstruction  and K = -1 and K = 0. For convenience we will refer to  these as LSR(-1) and 
LSR(0) in the subsequent  sections.  Note that in one space  dimension, the LSR(-1) scheme 
corresponds to  the second-order upwind (SOU)  method,  and the LSR(0) scheme corresponds 
to Fromm’s method. However, in two space dimensions, this is not the case. 

For the finite element methods, we consider the well-known Galerkin  finite element method 
(FEM)  and  its streamline-upwind  Petrov-Galerkin  (FEM-SUPG)  derivative along with  the 
more recently developed control volume finite element method  (CVFEM)  and  its analogue to  
SUPG, known as SUCV (CVFEM-SUCV) [2, 31. 
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All of the semi-discrete operators for the  methods considered in this work are  presented  in 
the appendix. 

3. RESULTS 

In  this section, a  summary of the discrete  phase  speed,  group  speed, diffusivity and  artificial 
diffusivity is  presented. The  asymptotic  truncation error  associated  with the  phase  and  group 
speed,  discrete  and  artificial diffusivity is presented for each method along with  the resolution 
requirements for 5% and 1% error levels in the  phase speed.  In the  subsequent discussion, the 
numerical approximation to  the physical diffusivity Q is referred to as the discrete diffusivity 
8, and  the diffusivity added  directly or indirectly by the  advection scheme is referred to as 
the artificial diffusivity aart. The non-dimensional phase  speed (?/e) ,  group speed (V,/c), 
discrete diffusivity (&/a) ,  and artificial diffusivity (l/Pyt) are  presented  as  functions of 
the non-dimensional wave number, 2Ax/X = IcAx/n. The grid  Peclet  number is defined 
as P, = cAx/2a, and  the Peclet  number based on the artificial diffusivity is defined as 
p a r t  e = cAx/2aa,t. For simplicity, the non-dimensional results are referred to as the phase, 
group,  discrete diffusivity and artificial diffusivity. 

Remark. An alternative and equivalent  non-dimensional scaling for the artificial 
diffusivity is based on the physical diffusivity, i.e., aaTt/(aPe).  However, this 
definition is equivalent to  the scaling defined above and requires the introduction 
of a physical diffusivity which  need not  be  present  in the case of pure  advection 
(although  the artificial diffusivity may always be present). In  addition, for the 
limiting case of pure  advection  where P, .+ 00, defining P?‘ = cAx/2aaTt provides 
an indicator of  how much the discrete  solution  deviates from pure advection.  In 
addition,  this  metric  indicates that when artificial diffusivity is introduced, the 
apparent or effective Peclet  number will remain  finite - at least through  a portion 
of the discrete spectrum. 

For each numerical  method, the analytical expressions for the  phase  and  group speed, 
discrete  and  artificial diffusivity are  presented  in  a  compact form as an aid to understanding  the 
results of the Fourier  analysis  (see  Tables 11, IV, VI,  and VIII). In the analytic expressions for 
phase  and  group  speed,  discrete  and  artificial diffusivity, the influence of the  mass  matrix 
in the  FEM,  FEM-SUPG,  CVFEM,  and CVFEM-SUCV  methods is expressed in terms 
of the function M(kAz)  as shown in Table I.  Note that  the second-order  node-centered 
finite difference scheme  with a consistent  mass matrix, referred to as the CD-M,  method 
in  subsequent  sections,  is  identical to  the CVFEM  formulation  in one-dimension - although  it 
is node-centered.  Therefore,  only the  CVFEM results are  presented  here  since  the equivalent 
semi-discrete operators yield identical  results. In  addition, for the one-dimensional results, the 
second-order upwind (SOU) scheme  corresponds to  the LSR(-1) scheme, and Fromm’s  method 
to  the  LSR(0) scheme. For this  reason, we only present  results for the SOU and  Fromm’s 
methods  in  the one-dimensional results. 

As a final note, we consider errors in  phase,  group  and  diffusivity of less than 1% to be 
small. For the  purposes of our  discussion,  errors between 1% to 5% are  termed  moderate while 
those that exceed 5% are deemed  large.  Note that  this choice of error  bounds is subjective,  and 
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further,  depends  upon  the  application of interest. However, in  our experience, errors  in phase, 
group  and discrete diffusivity of less than 5% are acceptable for many engineering applications. 

FEM - M, (2 + cos (kAx))/3 
CVFEM - M, (3 +cos (kAx))/4 

Table I. Mass matrix contribution for FEM and CVFEM methods where Mi indicates a lumped  mass 
matrix and M, indicates a consistent mass matrix. 

3.1. Phase Speed 

The  analytic expressions for the non-dimensional phase  speed for all of the semi-discrete 
methods considered may be found in Table 11. Here, the compact  notation for the mass matrix 
(see Table I) is used for the  FEM/CVFEM phase  speed. The stabilized  methods  (FEM-SUPG 
and CVFEM-SUCV)  introduce  a P, number  dependence  in the phase  speed  as  indicated by 
the presence of the stabilization  parameter, p (see the appendix,  Eq. (90) )) and  the Peclet 
number P,. Here, the  FEM  and  CVFEM phase  speeds are recovered for p = 0. The phase 
speed formulae for second-order central differences, the Galerkin finite element method  and 
control-volume finite element method may be found in Gresho and Sani [8].t 

QUICK 
Fromm's 

FEM / CVFEM 

Phase Speed (E/c) 
sin (kAx)/kAx 

[4sin (IcAx) - sin (2kAx)]/2kAx 
[8sin (kAx) - sin (2kAx)]  /6kAx 
[losin (kAz) - sin (2IcAx)I /8kAx 
[6 sin (kAx) - sin (2kAx)I /4kAx 

sin (kAz)[M(kAz)+P(2P+P;')(l-~os (kAz))l 
kAz(MZ(kAz)+/32sinz (kAz)) 

Table 11. Formulae €or one-dimensional phase speed. 

The non-dimensional phase  speed  results for a  variety  of  finite difference (or node-centered 
finite volume) methods  are presented  in  Figure 3. For comparison, the non-dimensional phase 
speed for the  FEM  and  CVFEM  methods  are presented  in  Figures 4 and 5 .  The phase speed 
for the FEM-SUPG  and CVFEM-SUCV  methods are also presented  in  Figures 4, 5 and 6 for 
pure  advection,  i.e., when P, 4 00. 

In the absence of phase  errors, the ideal semi-discrete phase  speed would exactly  replicate 
the continuous  phase  speed over the entire  discrete  spectrum from the limit Ax -+ 0 to  the 
grid Nyquist limit  where 2Ax/X = 1. However, all of the methods considered here  introduce 

+The formula in Gresho and Sani [S] for phase speed (Eq. 2.6-79) contains a typographical error in the 
numerator. 
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phase  errors - either  lagging or leading,  with  signals  associated  with the Nyquist  limit,  i.e., 
2Ax wavelengths,  being  stationary. In  the one-dimensional  limit, the lumped  mass FEM and 
CVFEM, and  FDM  methods yield identical spatial discretizations  and  non-dimensional  phase 
speed  results. 

Remark. In  this  initial  multi-methods  comparison, we have not  considered the 
effects of ad-hoc “tricks-of-the-trade”,  such as reduced  integration for the  FEM 
and  CVFEM  formulations,  on the phase  and  group  speed,  discrete and artificial 
diffusivity. The interested  reader  may  consult  Gresho, et al. [33] who has  considered 
the effects of reduced  integration for the advection-diffusion  equation using a 
Galerkin  finite  element  formulation. 

As a reminder to  the reader,  recall that  the first-order upwind scheme may  be decomposed 
into  a  centered  second-order  advection scheme with  concomitant  second-order  artificial 
viscosity. This is reflected in  Figure 3 by the non-dimensional  phase  curve for the “Centered 
FDM7 scheme. Both  Fromm’s  method  and the SOU scheme introduce  leading  phase  error 
for the mid-range  wavelengths  although the severe (M 30%) phase  errors in the mid-range of 
the discrete  spectrum for the second-order upwind method  are  significantly  greater than for 
Fromm’s method. 

In comparison to  the finite difference schemes, the only  finite  element  formulation that 
yields leading  phase  errors as large as the second-order upwind scheme  is the FEM-SUPG 
method  with a constant  stabilization  parameter of ,L3 = 1/2 (see Figure 4). Of interest 
here is the significant  improvement  in  phase  speed in moving from the baseline  Galerkin 
FEM discretization  using  a  consistent  mass to  the FEM-SUPG formulation  with an optimal 
stabilization  parameter Popt = l/G. This value of the stabilization  parameter was shown by 
Raymond  and  Gardner [34] to  annihilate  all  truncation  error  up to  sixth-order; see also Gresho 
and  Sani [8]. 

The  CVFEM  methods considered here yield strictly lagging phase  error as shown in Figure 
5. The  CVFEM-SUCV  method  with popt (optimal p for FEM-SUPG)  and  a consistent m a s  
matrix yields  a  non-dimensional  phase  speed close to  the Galerkin FEM with  a  consistent  mass 
matrix in the mid-range wavelengths. Although, it will be shown that CVFEM-SUCV  cannot 
reproduce the fourth-order  phase  accuracy of the simple  Galerkin FEM.  The ad-hoc  application 
of the streamline-upwind  Petrov-Galerkin  formulation  also  cannot  be  “tuned” to  yield the high- 
order  behavior  associated  with  FEM-SUPG. In  fact, ,6 = 1/2 appears to be an overall better 
stabilization  parameter for SUCV,  albeit  with  noticeable  lagging  errors  in  the  phase  speed 
thru  the mid-range wavelengths of the discrete  spectrum. A direct  comparison  between the 
FEM-SUPG  and  CVFEM-SUCV  methods  may be seen in  Figure 6 where the lagging  phase 
errors of the CVFEM-SUCV  method  are  evident - even  for the “optimal”  CVFEM-SUCV 
stabilization  parameter, P = 112. 

The FEM-SUPG  and CWEM-SUCV  methods exhibit  a  dependence  on the Peclet  number as 
shown in  Figures 7 and 8 for 1 5 P, _< 100 and  optimal  stabilization  parameters - p = 1 / 6  
for  FEM-SUPG  and ,f? = 1/2 for CVFEM-SUCV. Both FEM-SUPG  and  CVFEM-SUCV yield 
large  leading  phase  errors over 50% or more of the discrete  spectrum for P, < 5 suggesting 
that  the stabilization  parameter  should  be  selected based on the Peclet  number. 

The deleterious effect of the Peclet  number  dependence may be ameliorated by using the 
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Figure 3. Non-dimensional  phase  speed for a variety of finite-difference  (node-centered  finite-volume) 
methods. 
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Figure 4. Non-dimensional  phase  speed for finite  element  method  with a consistent  mass  matrix  (FEM 
- Mc), lumped  mass  (FEM - Ml), consistent  mass  matrix  and  SUPG  (FEM-SUPG)  with po,t and 

p = 1/2. 
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Figure 6. Non-dimensional  phase  speed for control-volume  finite  element  and  finite  element  methods 
using  streamline  upwinding  (CVFEM-SUCV  and  FEM-SUPG). 
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stabilization  parameter suggested by Brooks and Hughes [35] which in one-dimension is 

AXE r=p---, 
U 

where 
1 
pi? 

= coth (P,) - -. 

Figure 9 shows that E approaches  unity for large Peclet number and goes to zero rapidly 
for P, 5 3. Tezduyar [36] has suggested a doubly-asymptotic  approximation to  E as a 
more computationally efficient alternative to  Eq.  (26). The influence of the Peclet-adjusted 
stabilization  on the phase  speed is shown in Figure 10 for FEM-SUPG and in Figure 11 for 
CVFEM-SUCV. In  both cases, moderate to  large leading phase  errors are introduced  in the 
mid-range of the discrete  spectrum. 

Asymptotic Truncation Error and Resolution Estimates Asymptotic  truncation  error  in phase 
speed can  be determined by taking  the limit as kAx -+ 0 in the analytical expressions given 
in Table 11. Asymptotic  representations for SOU,  Fromm, TOU  and QUICK are given  by 

I 

C l n - 8  
c 6 n - 2  
--1---  AX)^ + O ( ( ~ A X ) ~ )  

for n = 4, 6 ,  8, and 10, for each of these  methods respectively. These  methods  are  2nd-order7 
except for TOU which is 4th-order  (with  a  leading coefficient of -1/30). The  asymptotic results 
for the upwind finite volume/finite difference methods  may  be verified by forming the Taylor 
series approximations for the skew-symmetric parts of the advection operators. 
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Figure 8. Non-dimensional  phase  speed for control-volume  finite  element  method  with a consistent 
mass matrix  and  CVFEM-SUCV  with 0 = 1/2 for P, = 1, 2, 5 ,  10, 100. 
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Figure 9. Doubly-asymptotic  stabilization  parameter for FEM-SUPG - see  Tezduyar [36]. 
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Figure 10. Non-dimensional  phase  speed  for the finite  element  method  with a consistent  mass  matrix 
and  FEM-SUPG using A p t  and < = coth(P,)  - 1/P, for P, = I ,  2, 5, 10, 100. 
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Figure 11. Non-dimensional  phase  speed for  control-volume  finite  element method  with a consistent 
mass  matrix  and SUCV with P = 1/2 and E = coth  (P,) - I /P ,  for P, = 1, 2, 5, 10, 100. 
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Remark. The first-order upwind scheme yields a  centered skew-symmetric second- 
order advection operator,  and consequently the asymptotic  estimate for the 
truncation  error based on the phase  speed yields O(Ax2). 

For both FEM-SUPG and CVFEM-SUCV the asymptotic  representation of the non- 
dimensional phase  speed  has the form 

I 

C 
- - 1 + g 2 ( k A ~ ) ~  + 9 4 ( k A ~ ) ~  + o ( ( k A ~ ) ~ ) .  
C (28) 

In  the limit of pure  advection, i.e., P, -+ CO, g2 0 as shown by Gresho and Sani [8] (see Eq. 
(2.6-180)) for FEM-SUPG.  By choosing ,B = l / n ,  

P2 1 g 4 = - - -  
12 180’ 

can also be made zero resulting  in  a  6th-order  accurate  method. 
For CVFEM-SUCV g2 is independent of ,B, with an asymptotic  representation of 

- 
C 1 
- N 1 - - ( ~ A z ) ~  + - - - 

24 
(T ( k A ~ t ) ~  + o ( ( k A ~ ) ~ ) .  

C 

Therefore for CVFEM-SUCV there is no ,O that will result  in  a higher order formula or optimal 
phase speed behavior in  terms of kAx. However, a  heuristically  optimal value of P = 1/2 gives 
a dispersion curve that approaches  FEM-SUPG (see Figures 8 and 7) although the truncation 
error  is only O(Az2) and  there  are lagging errors  in the mid-range wavelengths. 

If the lumped-mass  approximation  is  applied to  either  FEM-SUPG or CVFEM-SUCV,  i.e., 
row-sum-lumping of the original symmetric  mass matrix,  and  not  the skew-symmetric portion 
induced by the stabilization, the asymptotic  truncation  error  reverts  to, 

- 
C 
- - 1 - - ( ~ A z ) ~  + ( k A ~ t ) ~  + o ( ( k A ~ ) ~ )  1 
C 6 

which for ,O = 0 gives the formula for the centered finite difference scheme (equivalent to  
lumped  mass FEM  and  CVFEM). 

The  asymptotic convergence rates based on the phase  error are presented  in Table 111. 
Figure  12 shows the slope of the phase  error  in the asymptotic  range for the finite difference 
schemes considered here. We note that while the constant varies for the centered, second- 
order  upwind, QUICK and Fromm’s method, the slope of all these  methods  corresponds to  a 
O(Az2) convergence rate. Again, the third-order upwind method  exhibits O(Az4) convergence 
- a  superconvergent behavior that is  still not clear to us. 

In  contrast to  the finite difference results, the phase error for the finite element methods 
shown in Figure 13 indicate super-convergent behavior except when a lumped  mass  matrix 
is used. The O(Az6) behavior of FEM-SUPG  with  an  phase  error minimizing stabilization 
parameter is clearly shown here, while p = 1/2 is similar to  the baseline Galerkin  FEM  results. 
The  strictly second-order behavior of CVFEM is shown by the phase-error plots  in  Figure 14. 
Unlike SUPG for the finite eIement method, the SUCV  methods  do  not  exhibit  any  reduction 
in  phase  error  relative to  the baseline CVFEM  method  with a consistent  mass  matrix. As with 
the finite element method, mass lumping increases the phase  error,  but for CVFEM  there is 
no  reduction  in convergence rate  as  CVFEM does not  exhibit  any  superconvergent  behavior. 

Copyright @ 2000 John Wiley & Sons, Ltd. 
Prepared using f/dauth.c/s 

Int. J .  Numer.  Meth.  Fluids 2000: 0O:l-6 



GENERALIZED NEUMANN  ANALYSES: PART 1 21 

I" 

1 o-6 1 0 ' ~  loa lo-* 10" 

2 M A  

Figure 12. Convergence  rates  based  on  phase  error  for  a  variety of finite-difference  (node-centered 
finite-volume)  methods. 
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Figure 14. Convergence rates based  on  phase  error for the control-volume  finite  element  method  with 
a consistent mass matrix (CVFEM - Mc), lumped  mass  (CVFEM - ME), consistent mass matrix and 

CVFEM-SUCV  with pOpt and = 1/2. 

In  addition to  the asymptotic  truncation  error, the phase  error analysis may be used 
to estimate the required resolution for a given  level of “acceptable”  error. The resolution 
requirements for a 5% and 1% error  in phase are shown with the asymptotic  truncation  error 
estimates  in Table 111. Estimates for resolution requirements for additional  finite difference 
methods may be found in  Gresho and Sani[8] (see pg. 155). The best  phase accuracy for the 
least grid resolution is provided by FEM-SUPG  with /Iopt while the worst case is the second- 
order upwind method which, despite its second-order accuracy, requires more resolution than 
the first-order upwind method for an equivalent error. 

Although the CVFEM  variants yield competitive resolution estimates for a 5% phase  error, 
as the error  band is tightened, the CVFEM  methods  do  not perform as well as  their FEM 
counterparts.  This is due to  the large lagging phase  error thru  the midrange of the discrete 
spectrum (see Fjgure 5) which results  in  an increase in the resolution  requirement by a factor 
of 3 to  5 relative to  the finite element  method. 

3.2. Group Speed 

In one-dimension, the non-dimensional group velocity is 

For a non-dispersive medium, the group velocity is identical to  the phase speed. However, 
as already discussed, the discretization procedures considered here  result  in  a dispersive 
representation of the continuum  problem, Le., the phase speed is a  function of the wavenumber. 
Thus, using Eq. (13), Eq. (32) may  be  written  in  terms of the wavelength-dependent phase 
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Method 
FOU 
sou 
TOU 
QUICK 
Fromm’s 
FEM - M, 
FEM - Ml 
FEM - SUPG P o p t  

FEM - SUPG ,B = 112 
CVFEM - M, 
CVFEM - MI 
CVFEM - SUCV Popt 
CVFEM - SUCV P = 1/2 

Asymptotic 
T.E. 

O(Ax2) 

O(Ax2) 

o (Axz)  

o(aX4) 

o(ax2) 
o(aX4) 
o(ax2) 
o(aX4) 
0 ( Ax6) 

O(Ax2) 
O(Ax2) 
O(Ax2) 
O(Axc2) 

A/Ax for 
5%  Error 

11.4 
15.8 
5.46 
6.83 
3.96 
3.93 
11.4 
2.88 
4.39 
6.24 
11.4 
5.71 
2.69 

1% Error 
25.6 
36.2 
8.35 
13.5 
17.4 
5.61 
25.6 
4.76 
6.78 
13.1 
25.6 
12.8 
11.8 

23 

n 

Table 111. Asymptotic  estimates of truncation error  and  resolution  requirements based on the phase 
error for pure  advection.  (Note that  the FEM-SUPG and CVFEM-SUCV results are presented  only 

for a consistent  mass matrix Mc.) 

meed as 
de 
dk .zg = F(k) + k -. (33) 

Therefore, the group  speed will only be identical to  the phase  speed, the ideal situation, when 
ae 

k - - 0  dk . (34) 

This  can occur in the limit  as k ---f 0, i.e.,  a  constant  mode, or when the slope of the phase 
curve with  respect to  the wavenumber is zero - a  situation that we desire in the limit of k ---f 0. 

Indeed,  methods like FEM  and FEM-SUPG  with a consistent  mass matrix  and  the associated 
higher-order phase  speed  accuracy  do  a good job of emulating  this behavior, but fail at  the 
short wavelengths where the slope of the phase speed  curve changes rapidly as the phase speed 
goes to  zero with  2Ax/A + 1, i.e., at  the Nyquist  limit. The consequence of this is reflected 
in the group speed which will become large and negative at  the grid Nyquist limit. Thus,  the 
better  the phase  speed  behavior  through the discrete spectrum,  the worse the group  speed will 
be for 2Ax wavelengths. This is reflected in the results that follow. 

The group speed results for all the methods considered here  are shown in Table IV. The non- 
dimensional  group  speed for the finite difference methods,  FEM  and  CVFEM are  presented in 
Figures 15,16  and  17 respectively. As expected, all of the  methods considered here exhibit large 
negative  group  speed for 2Ax wavelengths. The large  leading  phase  errors for the second-order 
upwind (SOU) method  are reflected in the large  (relative to  the other FD methods) leading 
group  errors  and the large negative group  speed at  the grid Nyquist limit. The negative group 
speed at  the Nyquist  limit is a  direct consequence of the fact that  the phase speed decreases 
rapidly  with  respect to wavenumber as the Nyquist limit  is  approached. Thus, for SOU, the 
leading phase  error  in the mid-range of the discrete  spectrum  leads to  larger  group  errors for 
0.7 5 2Ax/X 5 1.0  relative to  the other finite difference methods. 
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Method 
FOU 
sou 
TOU 
QUICK 
Fromm’s 
FEM 

FEM-SUPG 

CVFEM 

CVFEM-SUCV 

Group Speed (2j$/c) 
cos ( k  Ax) 

1. [4 cos (kAx) - cos (2kAx)l 
2  COS (kAx) - cos (2kAx)l 2 [3 cos (kAx) - cos (2kAx)l 

2 COS  AX) - COS ( 2 k A ~ )  

[M(kA~)+(2~~+P/P~)(l-cos ( k ~ ~ ) ) ]  [ $+&(7-3p2) cos(kAz)+-  cos3(kAs)] 

(M2(kAr)+P2szn2(kAr))* 

(3+cOs (~Az))’ 
[M(kA~)+(2~~+P/P,)(l-cos(kAz))] [:+- c o s ( k A r ) + ~ ~ 0 ~ 3 ( k A r ) ]  

(M2(kAz)+P2 sin2 (kAz))2 

Table IV. Formulae for one-dimensional group speed. 

Similar effects are observed in  general for the FEM and  CVFEM  methods,  but  are somewhat 
more pronounced for the consistent  mass  and  SUPG/SUCV  variants.  Again, this is due to  the 
fact that phase speed remains  faithful to  the physical phase velocity over a  larger  range of 
the discrete  spectrum. For the FEM-SUPG  method  with /3 = l /2 ,  Gg/c = -12 for the 2Ax 
wavelengths. The phase-error minimizing value of the stabilization  parameter, Popt = l / f i  
reduces this large negative group velocity at  the Nyquist limit. 

Although not show here  due to  space limitations, the effect of the Peclet  number scaling on 
SUCV and  SUPG  is to  reduce the large negative  group speed for P, 5 2 relative to  the case 
where scaling is not used. The reader is directed to  [29]  for complete  details. 

Asymptotic  Truncation  Error  and  Resolution  Estimates 

Asymptotic  truncation  error  in the group  speed  can  be  determined by taking the limit as 
kAx -+ 0 in the analytical expressions given in  Table IV. The first and second-order upwind 
methods  are  both  O(Ax2)  in group  speed. The asymptotic form of the group  speed for Fromm, 
TOU  and QUICK is 

for n = 3, 4  and  5, respectively. Thus, Fromm  and QUICK are also second order  in  group, 
while TOU is 4th  order  (with  a coefficient of -1/6). 

For FEM-SUPG the asymptotic  group  speed  representation  is, 
- 

3P 15/3 - 180p2 + 2Pe(15P2 - 1) - wg 1 + - ( ~ A X ) ~  +   AX)^. 
c 2 P e  72Pe 

For Popt and  infinite P,,  the  group speed is 6th-order  accurate - similar to  the phase  speed. 
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Figure 17. Non-dimensional  group  speed for control-volume  finite  element  method  using a consistent 
mass matrix (CVFEM - Mc), lumped  mass  (CVFEM - Ml), consistent mass matrix and SUCV 

(CVFEM-SUCV)  with Popt and = 1/2. 

For p = 0, the asymptotic  representation for FEM is recovered, 
- 
- vg - 1 -   AX)^ 1 , 
C 36 

which is 4th-order  accurate. 
For SUCV the asymptotic  representation is 

- ( 3p i) + (5 + - E) ( k A x )  4 . 
C 2pe 192 8 2P, 

For ,8 = 0 the asymptotic  representation of group  speed for CVFEM is recovered, 
I 1 7 -'s N 1 -  AX)^ -  A AX)^. 
C 8 192 

(37) 

(39) 

Both  CVFEM  and  CVFEM-SUCV  are second-order accurate  in the group  speed. 
The resolution  requirements for a 5% and 1% error in group speed are shown with the 

asymptotic  truncation error  estimates in Table V. The best  group  speed  accuracy for the 
least grid resolution  is provided by FEM-SUPG  with pOpt while the worst case is the second- 
order upwind method which, despite its second-order accuracy, requires more resolution than 
the first-order upwind method.  Again, the CVFEM  method  exhibits reasonable resolution 
requirements for a 5% error  in the group. However, for a 1% error, the resolution requirements 
increase significantly due to lagging group  speed in the midrange of the discrete  spectrum. For 
CVFEM-SUCV with ,B = l/2,  the resolution requirements are  about a factor of 4 times higher 
than for the FEM-SUPG  method  with  the  optimal  stabilization  parameter - a factor of 16 in 
two dimensions for equivalent error. 
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LI 

Method 
FOU 
sou 
TOU 
QUICK 
Fromm’s 
FEM - M, 
FEM - Ml 
FEM - SUPG ,bop, 

FEM - SUPG /3 = l/2 
CVFEM - M, 
CVFEM - Ml 

CVFEM - SUCV Popt 
CVFEM - SUCV P = I/2 

T Asymptotic 
T.E. 

O(Ax2) 

O(Axz) 
O(Ax2) 

O(Ax2) 
O(Ax6) 

O(Ax2) 
O(Ax2) 
O(Ax2) 
O(Ax2) 

o(aX4) 

o(aX4) 

o(nX4) 

A/Ax for 
5% Error 

19.7 
27.7 
8.29 
11.2 
11.8 
5.70 
19.7 
3.75 
6.70 
10.4 
19.7 
9.88 
3.13 

1% Error 
44.4 
62.7 
12.6 
22.9 
30.8 
8.31 
44.4 
4.62 
10.3 
22.5 
44.4 
22.2 
21.3 

27 

n 
I1 

Table V. Asymptotic estimates of truncation error  and  resolution  requirements  based  on the group 
error for pure advection.(Note that the SUPG and SUCV results are presented  only for a consistent 

mass matrix Mc.) 

3.3. Discrete  Diflusivity 

Attention  is now turned  to  the behavior of the discrete,  wavelength-dependent diffusivity. 
The process of discretization  introduces  a wavelength dependence into  the discrete  thermal 
diffusivity even when a  constant  thermal diffusivity is prescribed for the continuum. The 
wavelength dependent behavior of the discrete diffusivity indicates that individual modes that 
comprise a temperature profile will diffuse at  different rates. The degree to  which the  rate of 
diffusion varies with wavelength is a function of the method chosen. 

The formulae for the non-dimensional discrete diffusivity are presented  in  Table VI. All of the 
finite difference and finite volume methods use second-order centered  approximations for the 
diffusion operator  and yield identical  discrete  difhsivities  as  indicated  by the single FDM/FVM 
entry  in Table VI. The  FEM/CVFEM (P = 0) with  lumped  mass matrix  (M(kAx) = 1) also 
revert to  the  FDM/FVM formula. 

n Method 1 Discrete Diffusivitv (&/a’, 1 
1 . 1  I ’ 

FDM / FVM 2 [l- cos (kAx)]  AX)^ 

Table VI. Formulae for one-dimensional  discrete  diffusivity. 

The non-dimensional discrete diffusivity for the FEM, CVFEM  (and  FDM)  methods  are 
presented  in  Figure 18, and  the results for FEM-SUPG  and CVFEM-SUCV are presented  in 
Figure 19. Here, we present the FEM-SUPG  and  CVFEM-SUCV  results for the case when 
P, > 3 with  a fixed stabilization  parameter P. For P, _< 3, the stabilization would presumably 
not be necessary. The ideal non-dimensional discrete diffusivity would be unity for the entire 
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Figure 18. Non-dimensional  discrete  diffusivity for Galerkin  finite  element (FEM) and  control-volume 
finite  element  methods  (CVFEM) . 

discrete wavelength spectrum.  Thus, the deviation of the non-dimensional  discrete diffusivity 
&/a from  unity  may  be  interpreted as an error  in  discrete  diffusivity  relative to the continuum 
value of the diffusivity. 

The consistent  mass FEM method  (FEM-M,)  exhibits an over-diffusive nature over the 
entire  discrete  spectrum,  and the consistent  mass  CVFEM  method  (CVFEM-M,)  is over- 
diffusive  in the mid-range of the discrete  spectrum.  In  contrast,  the  process of mass  lumping 
yields discrete  diffusivities for FEM  and  CVFEM  that  are under-diffusive for all  discrete 
wavelengths. The FEM-SUPG  and  CVFEM-SUCV  methods  exhibit  a  sensitivity to  the 
magnitude of the stabilization parameter, p. This  demonstrates that a  phase-error minimizing 
optimal value of the stabilization  parameter for pure  advection is not  an  optimal choice  for 

I 

thermal diffusion. 
The  finite volume schemes considered  all  share  a common second-order  centered 

discretization  representation of the diffusion term in Eq. (1) with an O(Az2) truncation  error 
as shown in  Table  VII. In one-dimension, the lumped-mass FEM, lumped-mass CVFEM,  and 
node-centered  finite volume schemes all yield equivalent  discrete  diffusivities  (Figure  18). Thus, 
the discrete  diffusivity for FOU, SOU, TOU,  etc. will be the same as  the lumped  mass  result 
of Figure  18.  Similarly,  the  node-centered  finite volume scheme that introduces  a  consistent 
mass matrix  (CD-M,) yields a  discrete diffusivity that is identical to  the  FEM method  with a 
consistent  mass in one  dimension.  Note that  the consistent  mass  CVFEM  and CFEM-SUCV 
(with Popt)  schemes yield the  least  error over the  spectrum of dimensionless wave number (see 
Figures 18 and  19). 

Asymptotic Truncation Error and Resolution Estimates The asymptotic  truncation  error 
estimates for discrete  diffusivity are summarized  in  Table VII. The mass-lumped  FVM  (or 
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1.50 I l I , I I ,  I l l  1 1 1  1 1 ,  

0.25 I 
Figure 19. Non-dimensional  discrete  diffusivity for  FEM with  SUPG and CVFEM  with  SUCV 

FDM)  methods considered all share the same  central difference approximation for the diffusion, 
resulting  in the following asymptotic  representation of discrete diffusivity 

- 
Q 1 1 
- - 1 - + 
Q 12 360  (40) 

For FEM-SUPG  (and  FEM when ,B = 0), the asymptotic formula for the discrete diffusivity 
is 

I 

Q 
- N 1 - p2 - - (ICAZ)~+ p4 - 
a ( :2) ( 12 360 

- a 
Q 
- - 1 - p2 - - p4+ - p 2 -  - ( i 4 )  ( 24  2880 

1 )  AX)^. 

All of the finite element based  methods  are 2nd-order for discrete diffusivity. 
Finally, use of a  lumped  mass  matrix (lumping the original mass matrix only)  with  FEM- 

SUPG or CVFEM-SUCV  stabilization yields the following discrete diffusivity 

which is identical to  the discrete diffusivity for the centered difference method for = 0. 
The resolution requirements for a 5% and 1% error  in  discrete diffusivity are shown with 

the asymptotic  truncation  error  estimates  in Table VII. The best diffusivity accuracy for the 
least  grid resolution is provided by FEM-SUPG  (in term of the 1% error)  with  The worst 
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Asymptotic A/Ax for 
Method T.E. 5% Error 1% Error 
FDM - Centered 
FEM - Ml 0 (Ax2) 8.03  18.1 
CVFEM - Ml 
FEM - M, I O(AXc“> 8.19 18.2 
FEM-SUPG (Pop t )  
FEM-SUPG (p  = 1/2) 
CVFEM - M, O( Ax’) 
CVFEM-SUCV ( P o p t )  2.30  9.52 

12.3 28.4 

Table VII. Asymptotic  estimates of truncation error  and  resolution  requirements  based on the discrete 
diffusivity for thermal diffusion. 

Method 1 Artificial Diffusivity ((PYt)-’ = 2aaVt/cAx) 
FOU 211 - COS (kAx)l/(kAx)2 
sou 
TOU 
QUICK 

[3 + cos (2kAz) - 4cOs (iAx)]/(kAx)’ 
[3 -t- cos (2kAx) - 4cos ( k A x ) ] / 3 ( k A ~ ) ~  
[3 + COS ( 2 k A ~ )  - 4 COS (kA~)]/4(kAl~)’ 

( 1  Fromm’s 1 [3 + cos (2kAx) - 4cos  (kAx)l/2(kAx)’ 11 
FEM / CVFEM 4P[M(kAz)( l -~os  (kAz)j--sin2 j k A z ) / Z ]  

( ~ A Z ) ~ ~ M ~ ( ~ A Z ) + P ~  sin2  (kAz)] U 
Table VIII. Formulae  for  one-dimensional  artificial  diffusivity. 

accuracy is obtained  with the p = 1/2 CVF’EM-SUCV formulation  with more than 28 grid 
points  required  per wavelength to  yield a discrete diffusivity error of 1%. Nearly as  bad is the 
FEM-SUPG, P = 1/2 formulation. 

3.4. Artificial  Diffusivity 

Artificial diffusion can  be added to a  method  either explicitly, e.g.,  via an explicit second-order 
or  fourth-order  operator, or it  can  be a by-product of an upwind advective discretization (e.g., 
first-order upwinding). In general, artificial diffusion is not  a  desirable  feature of a  method, 
it  can be useful for removing unwanted numerical artifacts  such  as high frequency dispersion 
errors  in convection-dominated problems. For hyperbolic conservation laws, i.e.,  pure advection 
in the context of this work, a  “properly tuned” artificial viscosity can be used to select the 
appropriate weak physical solution when non-smooth data is present. 

The formulae for dimensionless artificial diffusion as a  function of dimensionless wavenumber 
are shown in  Table VI11 for all the  methods considered here.$ In our opinion, an ideal artificial 

iA factor of 1/2 is missing  in the sin2 kAz term in the numerator of the artificial diffusion  formula  given  in 
Gresho  and  Sani [8] for FEM (see Eq. 2.6-78). 
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Figure 20. Non-dimensional  artificial  diffusivity for a variety of finite difference (node-centered  finite- 
volume)  methods. 

diffusivity should only be active  in the high-frequency, short-wavelength  portion of the discrete 
spectrum,  near the Nyquist grid  limit for example,  and should be negligible otherwise. In  this 
respect,  Figure 20, which shows artificial diffusion for the FDM  methods,  illustrates the well- 
known problem with the first-order-upwind  method. It behaves in  the opposite  manner to  the 
ideal, maximizing the artificial diffusion as the grid is refined (kAz --+ 0). The higher order 
finite difference methods  approximate  the desired spectral  behavior,  although they produce 
rather large  amounts of artificial diffusion even in  the mid-range frequencies when compared 
to  the FEM-based  methods shown in Figure 21. These  methods come closest to  the ideal 
spectral  behavior,  with artificial diffusion remaining small (relative to  it’s value at  the Nyquist 
limit)  until 2Az/X > 0.7 permitting the signals with “good” phase behavior to  survive the 
side-effects of the artificial diffusivity. The centered  methods,  i.e., FEM  and  CVFEM,  do not 
introduce artificial diffusion and hence do  not  appear in these figures. 

Asymptotic Truncation Error Estimates  The order of truncation  error  in the artificial 
diffusivity for FOU is 0(1) while all of the other  methods  are O(Az2). The order of truncation 
error  indicates how quickly the artificial diffusivity approaches zero as a function of the non- 
dimensional wave number. 

The non-dimensional artificial diffusivity may  be  written as 

The  asymptotic representation of the dimensionless artificial diffusivity for first-order upwind 
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FEM - SUPG p = 1/2 --.-I -Ij 
CVFEM - SUCVp=1/2 4 
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Figure 21. Non-dimensional  artificial diffusivity for FEM-SUPG  and  CVFEM-SUCV. 

(FOU)  is  identical to  the dimensionless discrete diffusivity in  Eq. (40), 

1  1  1 - part N 1 -  AX)^ +  A AX)^. 
e 12 360 

(45) 

However, here the constant  (unity) leading term  in  the  asymptotic expansion  indicates that 
the non-dimensional artificial viscosity (l/PzTt) approaches  a  constant quantity independent 
of kAx. As demonstrated  by the artificial viscosity results for FOU  in  Figure 20, l/PzTt -+ 1 
in the limit as  Ax -+ 0. Thus, a first-order upwind approximation yields an inconsistent 
approximation to  the pure advection problem,  albeit a consistent  approximation for some 
advection-diffusion problems with  finite diffusivity. 

The  asymptotic expansion for SOU,  Fromm, TOU  and QUICK is 

for 12 =1,2,3 and 4, respectively. In  contrast  to FOU, these  methods  are  all 2nd-order. Recall 
that  the central difference scheme, FEM  and  CVFEM  do  not  introduce any artificial diffusion. 
The  asymptotic form for FEM-SUPG is 

Using the optimal value of ,B(= 1/fi), the formula becomes, 

1 ( ~ A z ) ~   AX)^ -- 
Pzrt A [ 6 + 6 0 1  . 
-___ - 
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For CVFEM-SUCV, the asymptotic form is 

- 1 N 4 p  [y + - 1 (1 - 12p2)   LAX)^ + o ( ( k A ~ ) ~ ) ]  . 
P Z T t  192 

Using p = 1/2,  which is near-optimal for dispersion, the formula becomes 

(49) 

Thus, even though  they  are  both 2nd-order,  FEM-SUPG  has the smaller  leading coefficient; 
this is reflected in  Figure 21. 

Finally, if the mass matrix is lumped in either of SUPG or  SUCV prior to applying the 
stabilization  schemes, we get 

2 - [ (~Az)’  - (i + p2) ( ~ A z ) ~  + 0 ( ( k A ~ ) ~ )  
P y  2 1 

3.5. Eflects of Artificial  Diffusivity 

The  results presented so far  indicate that there is an  interplay between the artificial  diffusivity, 
phase  and  group  errors,  and  discrete diffusivity. While, it is difficult to identify  an  “ideal” 
artificial diffusivity, in our  opinion,  one that is active only in the high-frequency  portion of the 
discrete  spectrum  is, at a minimum,  desirable. We can  gain some additional  insight  into  the 
effects of the artificial diffusivity on the discrete  solution by considering its effect on the  time 
rate of change in the  quadratic  temperature, QT, 

d I d  
- (QT) = -- 1 TTdR = - (-T M,,,T) dt 2d t  dt 2 

d 1-T 

where, 
= A exp[-lc2aaTtt]  exp[-&(mAx  cos8 + nAy sin 0) + L W ~ ]  (53 )  

is the complex  conjugate of T and Msym is the symmetric part of the mass matrix. 

Remark. The  quadratic  temperature is  a  reasonable quantity to consider because 
it provides  a “natural”  metric for quantifying the effects of artificial diffusivity. It 
is well-known that, for the advection-diffusion  equation,  methods that conserve the 
quadratic  temperature  generate  stable ODE’S - an  important  feature for long-time 
integration.  In  addition,  it was also  demonstrated by Lee, et al. that conservation 
of T2 can  be  more important  than  other forms of conservation  where  stability is 
concerned[37]. 

We can show that  the  quadratic  temperature is  impacted by the symmetric  and skew- 
symmetric parts of the advective  and  mass  operators  respectively  (note that  this is trivial if 
T is only  real) by considering the  pure  advection  problem, i.e., no  physical diffusivity, 

Msymp + M s k e u p  + Askew(c)T + Asym(c)T = 0. (54) 

First,  as T and T are  both solutions to  the semi-discrete  problem, we have, 
-T T M ~ ~ ~ T  = - - T ~ M , ~ ~ ~ T  - T ~ A ~ ~ ~ ~ ( ~ ) T  - T ~ A ~ ~ ~ ( C ) T  ( 5 5 )  
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and  substituting from Eqs. (55) and (56) yields, 

d 1 -T . 1  - . -T 

d t  2 2 
- (QT) = --T  MskewT - -TTMskewT - T ASymT 

where TTBsymT = TTB,,,T and T BskewT = -TTB,ke,T are employed (B is any  square 
matrix). Clearly, the  quadratic  temperature involves a complex interplay between artificial 
diffusivity (as  it  impacts T and T ) ,  the symmetric  part of the advection  operator  and the 
skew-symmetric part of the mass  matrix. 

In order to  understand the effect of the artificial diffusivity on the  quadratic  temperature, 
we consider an advective time-scale r = Ax/c and  integrate Eq. (52) with  respect to  the time 
to  obtain the incremental change in QT over T ,  

- -T - 

t+r d 
QTt+T - QTt = 4 ( tFTMsymT) d t .  (59) 

Substituting the general solution and  its complex conjugate yields the  quadratic  temperature 
at an  arbitrary  time, t ,  

QTt = A2exp2[-k2aaTtt] x (60) 
N P  N P  

{exp[-Lk(xm,n COS 6 -t ~ m , n  sin ~)IMA~;}  I 

where M$-;t" is  the mth row, nth column entry in M s y m  and N P  is the number of rows/columns. 
Note that QT is a  function both of time, t ,  and wavenumber IC. 

In order to  permit  direct comparison between methods, we use the quadratic  temperature 
at time t to construct a non-dimensional quadratic  temperature increment over the advective 
time-scale T as 

AQT = &Tt+T - QTt 
QTt 

In  terms of this definition, it is clear that a  method  characterized by constant QT (' 1.e. no 
damping of quadratic  temperature) produces AQT = 0 while AQT = -1 indicates  a  method 
with  complete  damping of the associated waveform in one advective time scale T .  

After  substitution  into  Eq. (61) and cancellation of terms, the non-dimensional quadratic 
temperature increment  may be written  as, 

AQT = e x p 2 [ - ~ 2 ~ x 2 / ( 2 ~ y t ) ] ,  (62) 
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Figure 22. Kon-dimensional change in incremental quadratic temperature, AQT, for a variety of finite 
difference (node-centered  finite-volume)  methods. 

where it is clear the AQT is dependent  on wavenumber and grid  spacing  (as is P:‘”. Finally, 
note that  Eq. (62) is a general statement of the  quadratic  temperature increment for any of 
the methods considered in  this  document.  Indeed, the only method-dependent part occurs  in 
the artificial diffusivity contained  in PzTt.  

As noted above, an ideal artificial diffusivity (and hence energy  damping)  should only 
be active  in the high-frequency, short-wavelength  portion of the discrete  spectrum.  In  this 
respect,  Figure 22, which shows AQT for the  FDM  methods,  illustrates  that  this general 
behavior is respected. The higher order SOU and Fromm’s  methods  approximate the desired 
spectral  behavior,  although they produce  rather  large  amounts of damping even in the mid- 
range frequencies when compared to  the FEM-based methods shown in Figure 23. Conversely, 
QUICK and  TOU  both perform  quite well in the low frequency  range, but  do  not completely 
damp high-frequency signals (2Az/X = 1) over the advective time-scale. 

In  contrast, the  FEM/CVFEM schemes appear to  be nearly ideal (relative to  the other 
methods  presented  here),  with  modest  damping at low-frequencies, long-wavelengths, complete 
damping of the high-frequency, short-wavelength signals and a smooth  transition in the mid- 
frequency range. Again, an assessment of the “best”  damping  characteristics  depends on  the 
complex interplay between artificial diffusivity, phase and  group speeds. 

This concludes the discussion of the one-dimensional results.  In Part 2 of this  paper,  the 
two-dimensional results are presented along with  a  summary of the one- and two-dimensional 
results  and concluding remarks. 
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Figure 23. Non-dimensional  change in incremental quadratic temperature, AQT, for  FEM-SUPG  and 
CVFEM-SUCV  with p = Dopi and 1/2. 

APPENDIX 

The semi-discrete equations for each of the methods considered in  this work are presented here 
with the advection  operators decomposed into  symmetric  and skew-symmetric components 
where appropriate.  Each of the semi-discrete equations is presented in a  stencil form based  on 
the grid  layout shown in Figure 1. 

The generic form for the semi-discrete equations is 

M T  + A,(u)T + A,(v)T + KT = 0. (63) 

For each  operator  in the semi-discrete equation, the 'stencil' entries  multiply  their respective 
(m, n) field variables, e.g., for a generic operator A, . 

A =  

(m-2,n+2) (m-l,n+2) (m,n+2) (m+l,n+2) (m+2,n+2) 
(rn-2,nfl) (m-l,n+l) (m,n+l) (m+l,n+l) (m+2,n+l) 

(m-2,n) (m-1,n) (m,n) (m+l,n) (m+2,n) 
(m-24-1) (m-1,n-1) (m,n-1) (m+l,n-l) (m+2,n-1) 
(m-2,n-2) (m-1,n-2) (m,n-2) (m+l,n-2) (m+2,n-2) 

First-  Order  Upwind (FO U )  

I O 1  1 0  0 0 )  
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This  equation  represents  the  stencil for the FOU method in the form presented  in Eq. (64). 
The first term represents the discrete  mass matrix  operator,  the  next two terms are the 
x-  and y-components of the advection operator,  and  the  last  term  is  the stencil for the 
discrete  representation of diffusion. It is illustrative to decompose the advection  operator  into 
symmetric and skew-symmetric operators; the former  represents the artificial diffusivity in 
the method. The symmetric and skew-symmetric portions of the first-order upwind advection 
operator  are, 

for the x-coordinate  operator, and, 

A, = W A X  0 + v A x r 1  (67) 

for the y-coordinate  operator. Clearly, the first  stencil  on the RHS of each component  equation 
is the symmetric  contribution,  and if the two symmetric  components are summed  with the 
diffusion operator, the result is the classical expression for artificial diffusivity for the first- 
order upwind scheme, with the form a,,t,s N uAx and a,,t,y - vAy. 

0 -112 0 0 -l/2 0 

Second-Order  Central  Difference  (CD) 

AxAy r l .  0 1 0 T +uAy r l  -112 0 112 T i -  VAX F I T  0 
0 -1/2 0 

+a m ] T = O .  - Ax (68) 

The components of the skew-symmetric advective operator  are  the second and  third terms. 
There  is no  symmetric  portion to  this advective operator  and hence no  artificial  diffusion in 
this  method. 

We also consider an ad hoc version of this scheme, referred to as a  centered  difference  method 
with  consistent mass (CD-M,), in which the lumped  mass  term in the foregoing equation is 
replaced with the consistent mass matrix from CVF'EM: 

This scheme is ad-hoc because the spatial  representation of the time  derivative term is different 
from that for the advective and diffusive terms in order to arrive at  this form. 
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Second-  Order  Upwind (SOU) 

l o  0 0 0 0 1  

1 0  o o o o J  
0 0 - 4 0 0  
0 0 1 0 0  

where KcD denotes the 5-pt  central difference stencil for the diffusion operator, given by the 
last  operator  in the FOU stencil, Eq. (65) above. The symmetric  and  skew-symmetric  portions 
of the second-order upwind advection  operator are, 

UAY A, = - -2 3 -2 1/2 
2 

-2 0 2 -l /2 
0 0 0  0 0 0  
0 0 0  0 0 0 0  

(71) 

and, 

( 0  0 1/2 0 0 1  1 0 0 -1/2 0 0 1 

I o  0 1/2 0 0 1  1 0  0 1/2 0 0 1  

for the x-  and  y-components,  respectively. 

Third-Order  Upwind (TOU) 

1 0  0 0 0 0 1  

l o  0 0 0 0 1  
I I 

0 O T  
0 0 -12 0 0 
0 0  0 0  

The symmetric  and  skew-symmetric  portions of the third-order  upwind-biased scheme are, 

l o  0 0 0 0 1  1 0  0 0 0 0 1  
0 0 0 0 0  0 0 0 0 0  

A, = - uAy (74) 1 -8 0 8 -1 + - uAy 1 -4 6 -4 1 
1 2 0 0 0 0 0  1 2 0 0 0 0 0  

( 0  0 0 0 0 1  1 0  0 0 0 0 1  
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and, 

39 

10 0 1 0 01  10 0 -1 0 0 1  
0 0 8 0 0  

A, = - 0 0 6 0 O I +  0 0 0 0 0  
0 0 - 8 0 0  

10 0 1 0 01 

for the x- and y-components, respectively. 

Fromm’s Method 

1 0  0 1 0 01 

AxAy 4i;;zx;; 0 1 0 ?+- uAy 1 -5 3 1 0 

0 0 0 0 0  

WAX 
T + 4  

0 0 0 0 0  
0 0 1 0 0  
0 0 3 0 0  
0 0 - 5 0 0  
0 0 1 0 0  

The symmetric and skew-symmetric portions of the advection  operator in the Fromm upwind- 
biased scheme are, 

0 0’ 0 0 0 0  

(77) 

and , 
10 0 1/2 0 0 1  I 0 0 -1/2 0 0 I 
0 0  -2 0 0   0 0  3 

A, = --g- 
0 0  -2 0 0  0 0  -3 0 0  

1 0  0 l / 2  0 01  10 0 1/2 0 0 I 
for the x- and y-components, respectively. 

QUICK 

I o  0 0 0 0 1  l o  0 0 0 0 1  
0 0 0 0 0  vAx 0 0 3 0 0  
1 -7 3 3 0 T + -  0 0 3 0 0 T  
0 0 0 0 0  0 0 - 7 0 0  
0 0 0 0 0  0 0 1 0 0  

uay 
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+a KCD T = 0, (79) 
The  symmetric  and skew-symmetric portions of the advection operator  in the QUICK scheme 

'LLAY Ax = - 
8 

and, 

0 0 0 0  0 
0 0 0 0  0 

0 0 0 0  0 
0 0 0 0  0 

1/2 -2 3 -2 1/2 

0 0 1/2 0 0 

vax 
A, = - 

0 0  -2 0 0  
0 0 112 0 0 

l o  0 0 0  0 

UAY + - 1/2 -5 0 5 - l /2  
0 0 0 0  0 

0 0 0 0  0 
I o  0 0 0  0 

1 0 0 - l / 2  0 0 1 
0 0  5 

0 0  -5 0 0  
+ * l o  0 0 : :I 

l o  0 112 0 0 1  

for the x- and y-components, respectively. 

Node  Centered  Finite  Volume  with  Least  Squares  Gradient  Reconstruction (LSR) 

Two methods that result from applying an unweighted least  squares  gradient  reconstruction 
scheme were introduced  in Section (2.3). The stencil for the LSR(-1) ($ = 1 and IC = -1) is 
given by, 

AxAy 

l o o  0 0 0  r l  0 1 0 F+- u;y 1 -10 11 -2 0 
1 -1 -l -1 -l 1 0 O I  - l o  0 0 0 0 1  

1 0 0  0 0 0  

+ ~ K C D T = O .  
The symmetric  and skew-symmetric portions of the LSR(- 

I o  0 0 0 0 1  

UAY 
1/2 0 -1 0 1/2 

1/2 0 -1 0 1/2 
Ax = - + - 1/2 -6 11 -6 1/2 UAY 

6 

1 0  0 0 0 0 1  

vAx 0 1 - 2 1 0  

0 -1 -10 -1 0 T + T  
0 -1 11  -1 0 

and, 
I 0 1/2  1/2  1/2 0 I 

0 0  -6 0 
0 -1 11 -1 : I  + 7 vax 

A, = - 

I 0 1/2  1/2  1/2 0 1 
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-4 0 4 -1/2 
-1 0 1 -1/2 
0 0 0  v i  

0 -1 -4 -1 0 
0 1/2  1/2 1/2 0 

T 
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The stencil for the LSR(0) ($ = 1 and IC = 0) scheme is given by, 

12 0 0 0  -1 -1 1 0 
0 0 0 0 0  

The symmetric and skew-symmetric portions of the LSR(0) scheme are, 

-7 0 7 -1/2 
0 1/2 -1 0 1 -112 

0 0 0  

(86) 

and, 

+ vi 0 l / 2   1 / 2  112 0 

VAS 
A, = 12 - 

0 0  -6 0 0  l2 0 -1 -7 -1 0 
0 1/2  1/2  1/2 0 0 1/2  1/2  1/2 0 

(87) 

Galerkin  Finite  Element  Method  (FEM) 

The full stencil for the Galerkin Finite Element  Method (FEM) reads: 

A z A y r l  4 16 4 T+y uAy -4 0 4 T + -  u A x F I T  

36 1 4 1  -1 0 1 12 -1 -4 -1 

The components of the skew-symmetric portion of the advective operator  are  the second and 
third  terms;  there is no  symmetric  portion to  this operator. 

Finite  Element  Method  with SUPG (FEM-SUPG) 

The stencil for the Stream-Line Upwind Petrov-Galerkin (SUPG)  method contains  a modified 
mass matrix  and  an artificial diffusion term, 
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AxAy"l 4 16 4 T+T-  . uAy 12 T I .  4 0 -4 T + r -  u g E I T  

3 6 1 4 1  1 0 -1 

where the two-dimensional version of the  stability  parameter ( [ 3 5 ] )  is 

for large P,. The /3 coefficient can  be chosen to  optimize the method  with  respect to  its 
dispersive characteristics. The components of the skew-symmetric portions of the advective 
operator  are given by the 4th  and  5th  terms, while the symmetric  portion is the  6th  term, 
which can also be  written as: 

showing that  the symmetric  portion of the advective operator induced by SUPG contains  a 
cross term  and therefore  cannot  be resolved into x- and y-components as in the finite volume 
methods. 

Control  Volume Finite Element Method (CVFEM) 

The stencil for the Control Volume Finite Element  Method  reads: 

The advective operator  contains only skew-symmetric components, given  by the 2nd and 3rd 
terms in the equation. 
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Control-  Volume Finite Element Method  with SUCV (CVFEM-SUCV) 

A ~ A V T ~  6 36 6 T + T -  . uAy 16 r l .  6 0 -6 T+r-  u~EIF 
6 4 1 6 1  1 0 -1 

u2z - 4uu + u 2 k  6 v 2 4  - 2 u 2 2  u2z + 4uv + v 2 g  
7 

A Y  AY 
_ _  

8 
6 u 2 2  - 2 v 2 b  -12 (u2z + v 2 b )  6 u 2 2  - 2 u 2 s  T AY AY 

The skew-symmetric part of the advective operator  remains  the same as  in CVFEM, while the 
symmetric  portion, giving rise to  artificial diffusion, is  given by the  6th  term  in  the foregoing 
formula. Similar to FEM, this  term can  be  separated  into  three pieces, except the 4-8-4 columns 
and rows of SUPG go the 6-12-6, (with the same signs) in the SUCV. 
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