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Abstract

This report describes research and development of the large eddy simulation (LES) tur-

bulence modeling approach conducted as part of Sandia's laboratory directed research and

development (LDRD) program. The emphasis of the work described here has been toward

developing the capability to perform accurate and computationally a�ordable LES calcu-

lations of engineering problems using unstructured-grid codes, in wall-bounded geometries

and for problems with coupled physics. Speci�c contributions documented here include (1)

the implementation and testing of LES models in Sandia codes, including tests of a new

conserved scalar - laminar 
amelet SGS combustion model that does not assume statistical

independence between the mixture fraction and the scalar dissipation rate, (2) the devel-

opment and testing of statistical analysis and visualization utility software developed for

Exodus II unstructured grid LES, and (3) the development and testing of a novel new LES

near-wall subgrid model based on the one-dimensional Turbulence (ODT) model.
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1 Introduction

A vast number of engineering problems require an analysis of the e�ects of gaseous or liquid


uid 
ow in order to obtain adequate solutions. In some cases the 
ow is laminar, and even

sometimes steady; a fortunate situation where a variety of well developed analytical and nu-

merical approaches can be brought to bear to provide accurate solutions. However, in most

problems of engineering interest laminar 
ows are the exception instead of the norm because

turbulent 
ows are so much more common in nature. Turbulent 
ow is 3-dimensional, un-

steady, irregular and chaotic in nature, and analytical solutions to the governing equations

for turbulent 
ow are not possible. Experience has shown that accounting for turbulence

e�ects is usually a challenge, and predicting a-priori the e�ects of turbulence often impossi-

ble. This is especially so in problems where the turbulent 
ow is coupled to other physical

processes such as combustion and radiation heat transfer. Although direct numerical sim-

ulations (DNS) using high-order numerical approximations are in principle possible, the

computational cost of such calculations is so large that DNS is at present only useful for the

simplest of turbulent 
ows. Thus the development of methods for providing approximate

solutions of turbulent 
ow problems has been an area of great interest in the scienti�c and

engineering community for many years.

There are tremendous di�erences in complexity and range of applicability among turbu-

lence models. Usually the cost of increased generality is a corresponding increase in complex-

ity and computational e�ort. Current and historical approaches began with the use of simple

empirical correlations that relate nondimensional parameters of the 
ow, such as Reynolds

number, Grashof number and Prandtl number, to bulk parameters of interest such as the

pressure drop, wall shear, or wall heat transfer. With the advent of computers, computa-

tional 
uid dynamics (CFD) calculations could be performed to approximately solve various

reduced forms of the governing equations describing the conservation of mass, momentum,

and energy (as well as other parameters of interest). This has led to the development of a

rich collection of turbulence models that continue to be developed, re�ned, and improved to

this day.

Many models of great utility leverage the concept of time or ensemble averaging. This

type of averaging is the basis for deriving the Reynolds-averaged Navier-Stokes (RANS)

equations, which in turn form the basis for a host of turbulence models that are commonly

used. When cast in this form, the modeling problem becomes one of computing the so -

called Reynolds shear stress tensor, the term which represents the averaged e�ect of the

time-dependent 3-D motions on the transport of momentum.

The simplest type of RANS based models are variations of the approach originally in-

troduced by Prandtl [62]. This method relates knowledge of a mixing length "l", to the

magnitude of the Reynolds shear stress through the concept of a turbulent or eddy viscosity

as �rst proposed by Boussinesq [7]. One implication of models of this type is the presumed
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equivalence between the "generation" and "destruction" of the turbulence quantities a�ect-

ing the Reynolds shear stress. Application of the Prandtl mixing length method requires

empirically determined knowledge of the mixing length, and a vast amount of experimental

data has been gathered for this purpose. With todays computers, calculations are quick and

relatively inexpensive. However, outside the domain for which an appropriate mixing length

has been empirically determined the method cannot be applied with con�dence.

More complex models based on the RANS equations have been developed which introduce

additional transport equations for various statistical properties of interest. These turbulence

quantities are then related to appropriate e�ective transport properties in the time-averaged

momentum and scaler transport equations. These models are often categorized by the num-

ber of additional equations introduced, e.g. \one-equation models", \two-equation models",

and so forth. This concept in turbulence modeling was �rst introduced by Kolmogorov [41]

and Prandtl [63], but it was not until computers became available that these approaches

could e�ectively be developed.

Many early one-equation models choose the turbulent kinetic energy "k", as the turbulence

property of interest. To account for the near wall damping of turbulence, these models can

be modi�ed such that the turbulence viscosity includes a functional dependence on a local

turbulence Reynolds number. Since, in this method, an appropriate length scale must still

be prescribed algebraically according to previously determined empirical information, the

method also su�ers from a signi�cant dependence on 
ow dependent empirical information.

A more recent innovation in the development of one-equation RANS turbulence models

is the model of Spalart and Allmaras [71]. In this model, the Boussinesq eddy viscosity

approximation is invoked, and a transport equation for the turbulent viscosity is developed.

This model has proven to be signi�cantly more accurate and robust than earlier one-equation

models and is valid clear to the wall.

Two-equation turbulence models typically solve one transport equation for k, the turbu-

lent kinetic energy. In addition, they also solve an equation for a parameter related to the

local turbulence length scale. Choices for this parameter are varied, but three of the most

common are \�", the dissipation rate, \W", a pseudo-vorticity density, and \k*l", where l is

a turbulence length scale. Because these quantities are related to each other, it can be shown

that the real di�erences between the various models lie in the representation of the trans-

port and source terms, and in the constants employed. Because "exact" equations governing

both k and � can be derived, the di�erences between the various models are introduced in the

process of reducing these exact forms into a tractable approximate form suitable for compu-

tation. Modelers must choose which terms can be considered insigni�cant and dropped, and

how best to approximate the higher-order correlations that remain. These choices, and the

determination of the constants that are introduced, are the essence of turbulence modeling

of this type.

\Reynolds stress" or \stress equation" type models add additional partial di�erential

11



equations which compute all of the components of the turbulent stress tensor.

In regions adjacent to solid walls, the character of turbulent motions is signi�cantly al-

tered. To properly account for this region, additional modi�cations must be made to the

turbulent transport equations. This is usually done through the introduction of so-called

low-Reynolds-number (LRN) functions. Thus any of the \n-equation" models mentioned

earlier, if further modi�ed to account for this e�ect, can be referred to as a LRN form of

that particular model.

Despite years of development, RANS based modeling has yielded only limited predictive

capabilities. As faster computers have become available, alternative and potentially more

accurate modeling approaches have become more attractive. Of particular interest in this

report is the large-eddy simulation (LES) approach.

In contrast to RANS methods, whose basic equations are derived by ensemble or time

averaging, the LES equations are obtained by applying the idea of spatial �ltering. The

governing equations derived by applying these ideas are time dependent and three dimen-

sional | a vital feature of many engineering and environmental 
ows | but only account

explicitly for turbulent motions larger than a certain \cut-o�" length scale. These \large

scale" motions are in general anisotropic and 
ow geometry dependent, and contain the bulk

of the turbulent kinetic energy in the 
ow. To be accurate the LES must resolve a signi�-

cant portion of these larger scale motions. To close the LES equations, a subgrid model is

required in order to capture the e�ects of the unresolved small-scale turbulent motions on

the resolved 
ow scales. These smaller scale motions are in general more isotropic in nature,

account for most of the dissipation of the energy, and are considered easier to model. The

�delity required of a subgrid model to achieve acceptable overall predictions depends upon

several factors, including the �neness of the resolved mesh, the type of problem being solved,

and what aspects of the particular 
ow are important.

For turbulent 
ows with solid (i.e. no-slip) walls, the subgrid closure problem in the near-

wall region is a particularly diÆcult problem that remains an area of active research. Brie
y,

this region is problematic for three reasons. First, the dominant 
ow scale at a given distance

from the wall is of the order of that distance. Thus, the \large eddies" that must be captured

on the mesh to perform an accurate LES shrink in size as one approaches the wall, leading

to excessive computational costs. This problem is discussed by Baggett, who estimates that

the number of grid points required for proper resolution scales as Re2
�
. To some extent the

computational expense can be mitigated by resolving only the near-wall region with a �ne

mesh. This requires non-uniform meshing techniques coupled with accurate numerics and

LES models designed for non-uniform meshes. Although recent work has demonstrated some

success in this area (see [42, 64]) the computational expense is still quite large, especially

for higher Reynolds-number 
ows. A second problem is that uniform �ltering becomes ill

de�ned in the near-wall region when the �lter width at a given point extends beyond the wall

boundary. This introduces mathematical ambiguities that are diÆcult to reconcile. Finally,
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the dynamics of the 
ow near the wall are strongly anisotropic, and the turbulence production

in this region is associated with an up-scale energy cascade that is largely dominant over the

commonly assumed down-scale energy cascade that is present elsewhere.

A relatively new and novel approach to turbulence modeling that is important to the work

described here is the 'One-Dimensional Turbulence' (ODT) model. ODT can be viewed as a

method for simulating, with spatial and temporal resolution comparable to direct numerical

simulation, the evolution of the velocity vector and 
uid properties along a one-dimensional

(1D) line of sight through a 3D turbulent 
ow. ODT is an outgrowth of the linear-eddy

model [34], in which 
uid motions are prescribed without explicit introduction of a velocity

�eld. By means of a detailed analogy between a 1D spatial random process and turbulent

advection, this strategy has been implemented as a computational model that has shown re-

markable success in various stand-alone calculations. The �rst ODT formulation [35] involved

simulation of a single velocity component evolving on a line. A more recent formulation [36]

introduced the evolution of the three-component velocity vector on the 1D domain and a

generalization to treat variable-density e�ects dynamically is in progress.

In many respects ODT is complementary to conventional multidimensional turbulence

modeling approaches that cannot a�ord the computational expense of resolving the �ne scales

of high intensity turbulence. Accordingly, ODT lacks important attributes of conventional

approaches, yet captures important aspects of turbulence with �ne-scale physiochemical

processes and phenomena. A particular example of this that will developed here is to use

ODT as a near-wall subgrid model for LES.

The remainder of the report is divided into three parts. The �rst part provides a review

of the fundamental concepts and basic equations underlying the LES approach to turbulence

modeling. Additional topics discussed include current closure models, the statistical analysis

of turbulent 
ows, numerical errors, and the near-wall resolution and modeling problem.

The next part described the implementation and testing of LES models and utilities into

MPSalsa [69], an unstructured-grid �nite-element code developed at Sandia. Test results

from calculations of isotropic turbulence decay in a box (a classic test problem) and results

of simulations of a methanol pool �re are presented.

The �nal part of the report is a presentation of an LES near-wall subgrid model based on

ODT. The ODT model is reviewed and the formulation of the ODT near-wall LES model is

described in depth. Detailed results from applying the model to turbulent channel 
ow are

presented as well as some preliminary calculations of turbulent 
ow over a backward facing

step.
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2 LES Concepts and Basic Equations

The classic way to obtain reduced forms of the Navier-Stokes equations which are suitable for

introducing turbulence models is to apply the concepts of temporal, ensemble, and/or spatial

�ltering. For example, if temporal averaging is applied, the Reynolds-averaged Navier-Stokes

(RANS) equations are obtained (they can also be obtained by using ensemble averaging

ideas). In contrast, the LES equations are obtained by applying the idea of spatial �ltering.

In this section we provide a short review of the concepts, theory, and basic equations that

underlie the large eddy simulation (LES) approach to turbulence modeling. For convenience

the equations are presented in incompressible isothermal form. Although most of the con-

cepts discussed here are also applicable to compressible and variable density 
ow conditions,

the more complex equations that arise under these conditions are not presented here.

2.1 Continuity and Navier Stokes Equations

For conditions where the 
uid medium can be treated as a continuum, it is well accepted

that turbulent 
ow is governed by the basic equations describing the conservation of mass

and momentum (i.e. the continuity and Navier-Stokes equations). For an incompressible

Newtonian 
uid, the continuity and Navier-Stokes equations can be expressed in the following

form.

@ui

@xi
= 0 (2.1)

�
@ui

@t
+ �

@

@xj
(uiuj) = � @p

@xi
+

@

@xj

"
�

 
@ui

@xj

!#
+ �fi (2.2)

where ui is the velocity component in the xi direction, � is the 
uid density, fi is a body

force (e.g. gravity) in the xi direction, p denotes pressure, and we use of the convention that

repeated indices imply summation. When prescribed with boundary and initial conditions,

these equations de�ne the spatial and temporal behavior of the velocity components, ui and

the pressure, p.

Although closed form solutions to these equations can only be obtained for a very limited

number of problems, solutions to discrete approximations are now possible for most laminar


ows of interest using todays high speed computers and any of a number of numerical

techniques (e.g. �nite element, �nite volume, etc.). However, in 
ows where the Reynolds

number (Re) is large, the 
ow becomes turbulent and the range in length and time scales that

must be resolved generally makes the direct numerical solution to these equations intractable

for all but the simplest of problems. Thus for practical problems of engineering interest,

turbulence modeling has become indispensable as a tool for obtaining approximate solutions.
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2.2 Conceptual Framework of LES

A Fourier analysis of the 3-D velocity �eld in any turbulent 
ow reveals that the velocity

�eld consists of contributions from a wide range of length scales. For conceptual purposes, it

is common to refer to motions at di�erent length scales in terms of characteristic \eddies",

i.e. swirling motions, that denote the vortical nature of the 
ow over a given length scale.

The concept of LES is based on the idea of trying to capture (or resolve) only the largest

length scales (or eddies) of a particular turbulent 
ow, while at the same time modeling the

e�ect of the smaller unresolved scales. Hence the name \large eddy simulation."

As explained by C. Hartel [29], the viability of the LES approach to modeling turbulent


ow rests mainly on \two presumptions which appear plausible in view of both practical

experience and theoretical considerations. The �rst of these is that most global features of

turbulent 
ows, like average mixing rates or averaged losses, are governed by the dynamics of

the largest scales and depend only little on the small-scale turbulence. From a practical point

of view such global features are of primary interest and hence a reliable simulation of the

largest scales will usually suÆce. The other presumption is that the small-scale turbulence,

especially at high Reynolds numbers, becomes independent of the strong inhomogeneities

which are typical for the energy-containing eddies and thus tends to local isotropy. . . . It

is reasonable to suppose that in this case models for the small-scale turbulence can be much

simpler than statistical turbulence models and will be more universally applicable, because

statistical models have to account for the inhomogeneous eddies as well."

To obtain equations which formally represent the LES concepts in mathematical form

requires one to begin with the continuity and Navier-Stokes equations, and then apply the

concept of spatial �ltering.

2.3 Spatial Filtering

Conceptually, spatial �ltering is simply the idea of de�ning a weighted average over some

�nite spatial domain. Mathematically, we can de�ne a generic �ltered variable �� as a function

of its associated un�ltered variable � as follows.

��(x; t) =

Z
D

�(x; t)G(x� z;�) dz; (2.3)

where G is a normalized �lter kernel (or weighting function), D is the domain of the 
ow,

and � is the �lter width in each spatial direction. The shape and spatial extent of the �lter

kernel is a modeling choice. For example, if a box �lter is chosen, then the value of �� is

the instantaneous average value of � within the domain enclosed by a box of dimension �.

Other common �lter types used in LES include the Gaussian �lter and the sharp spectral

�lter. Pope [61], Sagaut [66] and many others provide simple �gures which illustrate the

shape of these �lters both in physical space and in wavenumber space.
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It is also useful to de�ne a related variable �0 as the instantaneous di�erence between �

and ��, such that

� = ��+ �
0 (2.4)

and we add as a reminder that although not explicitly indicated, all of these values are, in

general, functions of x and t.

Finally, it is important to note that contrary to traditional Reynolds averaging, spatially

�ltered variables have the following properties

�� 6= �� (2.5)

and

�0 6= 0: (2.6)

2.4 The Spatially Filtered Equations

There are several ways to derive LES equations of motion. The most common approach (what

might be termed the \classic" approach) begins by requiring that the �ltering operation

commute with di�erentiation (which Pope [61] notes is true for all homogeneous �lters).

Under this constraint, one can simply apply the �ltering operation to the continuity and

Navier-Stokes equations directly, term by term. Denoting �ltered quantities with an overbar,

this yields the following LES equations for an incompressible 
uid with constant properties:

�
@�ui

@t
+ �

@

@xj
(uiuj) = � @�p

@xi
+

@

@xj

"
�

 
@�ui

@xj

!#
+ � �fi (2.7)

@�ui

@xi

= 0: (2.8)

Of particular interest is the nonlinear advection term (the second term) in Eq. (2.7). This

is the term which requires closure, and thus where an LES subgrid model must be de�ned

and applied in order to solve these equations. Example closure models are reviewed shortly.

Although Eqs. (2.7) and (2.8) are often considered the basic LES equations of motion, it is

important to recognize that because exact solutions of these equations are not possible, and if

solutions are to be obtained, one cannot avoid the further step of choosing and implementing

a numerical discretization scheme (e.g., �nite di�erence, control volume, �nite element, etc.)

in order to de�ne a set of discrete LES equations that can be solved on a �nite grid. Thus

the real LES equations are always a discrete form of Eqs. (2.7) and (2.8) coupled with a

particular closure model.

An alternative way to develop a set of discrete LES equations is described by Schumann

[67]. In this approach, called the `volume-balance method,' the averaged quantities corre-

spond to a discrete number of volumes that are �xed in space (i.e., the mesh). In essence,
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it is simply a control-volume numerical scheme developed for LES. The governing equations

are integrated by parts to obtain discrete budget equations for the individual mesh cells.

The modeling problem then reduces to how to represent accurately the unresolved surface


uxes in terms of the spatially averaged quantities that are available. An advantage of this

method is that irregular or anisotropic meshes do not introduce fundamental errors. (For

the classic approach with non-uniform meshes, �lter commutativity becomes a problem [66].)

Adopting Schumann's notation, the discrete momentum equation that would correspond to

Eq. (2.7) above can be written as

�
@�ui

@t
+ �Æj(uiuj

S) = �Æi�p + Æj

24�
0@ @ui
@xj

S
1A35+ � �fi; (2.9)

where Æ denotes a numerical-di�erence operator, and the advective and di�usive 
ux terms

(denoted by superscript S) are averages over surfaces, not volume averages.

2.5 An Introduction to Closure Models

As noted above, the LES closure problem centers around how to model the nonlinear ad-

vection term, i.e. the second term in Eq. (2.7). In the literature, this is usually done by

�rst de�ning a subgrid-scale stress tensor (often denoted as �ij , as it will be here), and then

casting the closure problem as one of modeling �ij in terms of the �ltered velocities �ui. How-

ever, the actual de�nition of �ij is not always the same, and so the reader is cautioned to be

careful in distinguishing these di�erences when considering di�erent LES models.

There are two related, but somewhat distinct approaches that are commonly used to

de�ne �ij . In the �rst approach �ij is simply de�ned as the di�erence between the true

�ltered nonlinear advection term uiuj, and the �ltered-velocity advection term �ui�uj, as

�ij = uiuj � �ui�uj: (2.10)

With this de�nition, Eq. (2.7) can be rewritten as

�
@�ui

@t
+ �

@

@xj

(�ui�uj) = � @�p

@xi

+
@

@xj

"
�

 
@�ui

@xj

!#
� @

@xj

�ij (2.11)

where body-forces have been neglected for simplicity.

A second de�nition for �ij is described only after �rst applying the decomposition of

Eq. (2.4) to uiuj, and then expanding.

uiuj = (�ui + u
0
i
)(�uj + u

0
j
) = (�ui�uj + �uiu

0
j
+ u

0
i
�uj) + u

0
i
u
0
j
) (2.12)
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From these it is customary to de�ne a `Leonard stress tensor' Lij , a `Cross stress tensor'

Cij, and a `SGS Reynolds stress tensor' Rij as follows.

Lij = �ui�uj � �ui�uj (2.13)

Cij = �uiu
0
j
+ u

0
i
�uj) (2.14)

Rij = u
0
i
u
0
j

(2.15)

An important point discussed by Speziale [73] is that Lij and Cij individually are not Galilean

invarient which is an intrinsic property of the Navier-Stokes equations (although Lij + Cij

are). With these de�nitions the nonlinear advection term can now be expressed as

uiuj = �ui�uj + Lij + Cij +Rij (2.16)

One can now see that what remains to be modeled are Cij and Rij , since each of the

other terms can be computed explicitly. Thus, when applying the above decomposition and

de�nitions, it is customary to de�ne the sub-grid stress tensor as only associated with the

portion that must be modeled, i.e.,

�ij = Cij +Rij = (�uiu
0
j
+ u

0
i
�uj)) + u

0
i
u
0
j

(2.17)

which, when combined with Eq. (2.7), allows one to write

�
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@xj
(�ui�uj) = � @�p

@xi
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@xj
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@�ui

@xj

!#
� @

@xj
Lij � @

@xj
�ij (2.18)

where the body-force term has again been dropped for simplicity. Comparing Eq. (2.18)

with Eq. (2.11) one can see that the only di�erence is that the Leonard stress tensor Lij,

which can be modeled, has been pulled out explicitly in Eq. (2.18). In either case, what

remains to be modeled is the sub-grid stress tensor (which ever way it is de�ned).

One �nal note that may be helpful to the reader. The subgrid stress tensor can be

partitioned into an isotropic part (written as 1
3
Æij�kk) and an anisotropic part (written as

�ij � 1
3
Æij�kk). Because the isotropic part of the stress can be absorbed in the pressure, some

authors de�ne the subgrid stress tensor as only the anisotropic part of the SGS stress, so as

to simplify some of the modeling equations that will follow. The reader is simply cautioned

to be cognizant of these subtle di�erences so as to avoid any confusion that may arise when

reading the literature on this subject.

Currently, almost all commonly-used LES subgrid models can be classi�ed as either a

\gradient di�usion" type model, a \scale similarity" based model, or some combination of the

two, called a \mixed" model. These are speci�c examples of what Sagaut [66] more generally
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classi�es as \functional modeling" and \structural modeling," and the reader is referred to

Chapters 3-6 of [66] for a more detailed discussion of LES subgrid closure modeling than the

brief introduction that will follow here.

2.5.1 Gradient-Di�usion Closure

Gradient-di�usion models adopt the following hypothesis, which consists of assuming that

the anisotropic part of the subgrid-scale stress tensor � is proportional to the resolved (large

scale) strain-rate tensor S:

�ij � 1

3
Æij�kk = �2�S �Sij (2.19)

�Sij =
1

2

 
@�ui

@xj
+
@�uj

@xi

!
; (2.20)

where �S is a subgrid eddy viscosity, which must be computed from an appropriate model,

and Æij is the Kronecker delta. By de�ning a modi�ed pressure �P that includes the isotropic

part of �ij (i.e.
1
3
Æij�kk, which is the trace of � , and which also de�nes the subgrid kinetic

energy) and performing the appropriate algebraic substitutions and manipulations (for detail

see for example ref. [11]), Eq. (2.11) can be expressed as
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@xj
(�ui�uj) = �@

�P

@xi
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@�ui

@xj

!#
: (2.21)

Thus under these assumptions the modeling problem �nally reduces to the question of

how to compute the subgrid eddy viscosity as a function of other known quantities.

2.5.1.1 Smagorinsky The �rst model to appear in the literature for the subgrid eddy vis-

cosity was introduced by Smagorinsky (1963) and it remains, together with its variants, a

widely applied model today. It can be written compactly as

�S = �(CS�)2(2�Sij �Sij)
1=2 (2.22)

where CS is called the Smagorinsky constant, and the characteristic �lter width � is generally

computed as the cube root of the local cell volume:

� = (�x1�x2�x3)
1=3
: (2.23)

Substitution of Eq. (2.22) into Eq. (2.19) yields

�ij � 1

3
Æij�kk = �2�(CS�)2j�Sj �Sij (2.24)

where j�Sj = (2�Sij �Sij)
1=2.
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2.5.1.2 Ksgs Simple eddy viscosity models, such as the Smagorinsky model, implicitly

assume that energy production and dissipation are in instantaneous local equilibrium. How-

ever, this is not a necessary requirement of the gradient di�usion hypothesis. The so called

Ksgs (short for subgrid scale kinetic energy) model is one successful model that has been

designed to overcome this limitation.

To describe this model we begin by de�ning the subgrid kinetic energy ksgs as the trace

of the subgrid-scale stress tensor, �ij, i.e.

k
sgs � 1

2
�
sgs

kk
=

1

2
(ukuk � �uk�uk): (2.25)

An exact subgrid kinetic energy equation is obtained by a procedure that is similar to

the procedure used in RANS modeling to obtain what is called the turbulent kinetic energy

equation (the equation that is used as part of the well known k� " RANS model). Skipping

the derivation we can write an "exact" subgrid kinetic energy equation in the following form.
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As can be seen, this equation contains several unclosed terms that must be modeled. A

model equation for the subgrid kinetic energy was �rst proposed by Schumann [67], and can

be written as follows:

@k
sgs

@t
+

@

@xi
(~uik

sgs) = P
sgs �D

sgs +
@

@xi
(�T

@k
sgs

@xi
): (2.27)

where P sgs = �Ck�
sgs

ij @�ui=@xj is the production of subgrid kinetic energy,D
sgs = C"(k

sgs)3=2= ��,

represents the dissipation, and the eddy viscosity is determined from k
sgs as

�T = C�
��(ksgs)1=2: (2.28)

In this model three constants must be prescribed, C�; Ck; C" (although typically the value

of Ck is set equal to unity), and the e�ective model for the subgrid stresses becomes

�
sgs

ij = �2�T �Sij + 1

3
Æij�

sgs

kk
(2.29)

where we remind the reader that �
sgs

kk
= 2ksgs.

Though this is an eddy viscosity model just as the Smagorinsky model is, no assumption

about the equivalence of production and dissipation are made and therefore nonequilibrium

e�ects are accounted for in this model.

2.5.1.3 Dynamic Smagorinsky A method for dynamically adjusting the Smagorinsky con-

stant to the local features of the 
ow was �rst suggested by Germano et al. [24]. The basic
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idea is to assume that the constant in the eddy-viscosity relationship is the same for a second

�lter of larger width e�. Given this second �lter, typically referred to as the test �lter, we

can de�ne a second subgrid-scale stress tensor Tij as follows,

Tij = guiuj � ~�ui~�uj: (2.30)

Tilde denotes the test �lter, here applied to quantities that have already been subject to a

�lter of width �. We now note that the di�erence between this tensor T and the �ltered

value of � (using the test �lter) can be written in terms of quantities that can be computed,

i.e.,

Lij = Tij � ~�ij = g�ui�uj � ~�ui~�uj: (2.31)

If we apply the assumption that the Smagorinsky constant is the same at both �lter widths,

then we can write

g�ui�uj � ~�ui~�uj = 2�(CS
e�)2je�Sj e�Sij � g2�(CS�)2j�Sj �Sij; (2.32)

where the wide tilde over the rightmost term indicates test �ltering of the entire term.

This is an overdetermined but closed system of equations for the Smagorinsky constant CS.

The most common method of dealing with the overdeterminancy is to use the least-squares

solution described by Lilly [44]. However, the fact that CS appears inside the �ltering

operation (second term on the right-hand side of Eq. (2.32)) introduces some additional

mathematical and practical problems for which various solutions have been proposed. These

are discussed by Ghosal et al. [26], and a dynamic localization procedure is proposed which

uses a constrained variational formulation.

For 
ows with two homogeneous directions, such as fully developed turbulent 
ow between

parallel plates, the following formula is obtained:

(CS(y; t))
2 =

" hmijLijixz
hmklmklixz

#
+

; (2.33)

where mij = 2�(wt�)2je�Sj e�Sij � g2�(�)2j�Sj �Sij , hixz denotes averaging over a layer of �nite

thickness in the xz plane, and the brackets with a + subscript denote the operation of taking

the positive part, i.e., [x]+ = 1
2
(x+ jxj) for any real number x.

2.5.1.4 Dynamic Ksgs This model was �rst proposed by Kim and Menon [40] and later

extended to compressible 
ows by Nelson [56]. The test-scale level resolved turbulent kinetic

energy is de�ned as

k
test =

1

2
( d�uk�uk � �̂uk �̂uk) = Lkk=2 (2.34)

where here we denote the second �lter with a \hat" symbol b. Scale similarity between Lij

and � sgs is assumed. Evidence of this scale similarity was obtained by Liu et al. [45] in the
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fully developed region of a circular jet. The resolved dissipation, denoted \e", is

e = (� + �T )

0@ d
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@xj

1A (2.35)

At the subgrid scale level the subgrid stress tensor is modeled as

�
sgs

ij
= �2C��(ksgs)1=2 �Sij +

1

3
Æij�kk (2.36)

and at the test scale level Lij is modeled as

Lij = �2C��̂(ktest)1=2 �̂Sij +
1

3
ÆijLkk (2.37)

These two expressions contain just one unknown, C� and so the least squares procedure is

employed to solve this over determined system for the coeÆcient C�,

C� =
Lij�ij

�ij�ij
(2.38)

where

�ij = ��̂(ktest)1=2 �̂Sij: (2.39)

One point worth mentioning is that C� no longer exists inside the �ltering operation and so

Eq. (2.38) is now consistent. Thus there is no need for ensemble averaging, and the model

coeÆcients are truly localized. The dissipation model coeÆcient C" is obtained through

e = C"

(ktest)3=2

�̂
(2.40)

and, �nally,

C" = (� + �T )�̂

0@ d
@ui

@xj

@ui

@xj
� @ �̂ui

@xj

@ �̂ui

@xj

1A =(ktest)3=2 (2.41)

2.5.2 Scale Similarity Based Closure

The conceptual idea behind scale similarity based closure models is the notion that the

behavior of the smallest resolved scales of motion can be used to approximate the behavior

of the un-resolved scales. As proposed by Bardina et al. [3, 4] and articulated by Sagaut

[66], this method is based on the hypothesis that \the statistical structure of the tensors

constructed on the basis of the subgrid scales is similar to that of their equivalents evaluated

on the basis of the smallest resolved scales."(cf. [66], pg. 177)

Variations on this general theme have led to a variety of models (e.g. [45],[30]). Here

we provide a brief description of how Bardina's original model, which leads to the following

approximation (see Eq. (2.7) above)

�ij = uiuj � �ui�uj � �ui�uj � ��ui��uj (2.42)
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can be derived.

We begin by applying the decomposition of Eq. (2.4) to the Cross stress (Eq. (2.14)) and

SGS Reynolds stress (Eq. (2.15)) tensors, and then make the following approximations:

Cij = �ui(uj � �uj) + �uj(ui � �ui) � ��ui(�uj � ��uj) + ��uj(�ui � ��ui) (2.43)

and

Rij = (ui � �ui)(uj � �uj) � (�ui � ��ui)(�uj � ��uj): (2.44)

When these two approximations are added, several terms can be subtracted out, yielding

Cij +Rij � �ui�uj � ��ui��uj: (2.45)

When these are added to the Leonard stress tensor (Eq. (2.13), we can �nally write

�ij = Lij + Cij +Rij � �ui�uj � ��ui��uj: (2.46)

2.5.3 Mixed Models

An advantage of the scale similarity models is that energy transfer between large (resolved)

scales and small (modeled) scales is bi-directional, providing a mechanism for modeling

\backscatter" | i.e. the backward 
ux of energy that occurs intermittently during real

turbulent 
ows. Unfortunately, scale similarity models by themselves do not adequately

dissipate the energy from the resolved scales. In other words, the model does not ensure a

net energy transfer to the small scales, which can lead to an unphysical build-up of energy in

the resolved scales. This problem has motivated researchers to try combining scale similarity

models with gradient di�usion (eddy viscosity) models to ensure the proper dissipation of

energy. These models are now commonly called \mixed models", and can be written in the

following general form;

�ij � 1

3
Æij�kk = �2�S �Sij + (Lij � 1

3
ÆijLkk) (2.47)

where the subgrid eddy viscosity is found from a gradient di�usion model and the tensor Lij

is evaluated using a scale similarity model.

For example, the mixed \Smagorinsky-Bardina model" [4] is obtained when using Equa-

tion (2.22) for the eddy viscosity, and de�ning the tensor Lij as per Equation (2.46), i.e.

Lij = Lij + Cij +Rij = �ui�uj � ��ui��uj : (2.48)

Other examples of mixed models are summarized in reference [66].
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2.5.4 Comments on Closure Models and E�ective Filtering

Based on the methodology used to develop the LES equations, one is naturally inclined to

think of developing an LES model in the following sequential manner:

(1) choose a particular �lter (e.g. box or gaussian �lter),

(2) apply the �lter to the NS equations, and

(3) develop or choose a subgrid closure model.

However, in some respects this is probably not the best way to view the process. Since the

LES equations are valid for any homogeneous �lter, in fact, it is the subgrid model which

de�nes the e�ective �lter (assuming the solution is numerically well resolved). For example,

it can be shown that a Smagorinsky model corresponds to the application of a smooth (in

spectral space) �lter that is \gaussian-like" in shape (see [66] and [1]).

An interesting way to better understand this issue is presented by Sagaut ([66] pg. 207),

who reinterprets the LES equations as exact equations describing a \non-Newtonian 
uid of

the generalized Newtonian type," which he calls a \Smagorinsky 
uid" when a Smagorinsky

model is applied.

This illustrates one of the important complexities of LES which must be clearly under-

stood in order to understand and interpret any results obtained. Unfortunately, the issue

of e�ective �lters in LES is further complicated by a host of numerical issues, which will be

brie
y discussed later in Section 2.7.

2.6 Statistical Analysis of Turbulent Flows

An important characteristic of the velocity �eld in turbulent 
ows is its \random" nature

(here we use the term random as de�ned by Pope [61]), and thus the statistical description

of turbulent 
ows has become a fundamental aspect of turbulence simulation and analysis.

Probably the most important statistical quantities of interest ( and the most physically

revealing) are the mean values of the 
ow variables, some times referred to as moments.

The �rst two moments are called the mean and the variance. These moments are routinely

measured in experiments and form the basis of the RANS solution approach for turbulent


ows. There are several techniques used to obtain these moments from raw data. To present

these techniques �rst requires a few de�nitions.

A stationary 
ow is one in which the mean values are independent of the initial time from

which the means are determined. Stationary 
ows are also referred to as statistically steady.

In other words, the mean values do not change with time. An example of a stationary 
ow

is a jet 
ow issuing from the nozzle of a pipe at high Reynolds number with a constant mass


ow rate. After some time, the 
ow settles down and a stationary 
ow is achieved. A probe

designed to measure the velocity �eld placed at some location within the jet would measure

a 
uctuating velocity that if examined closely would seem to be oscillating randomly about
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a steady mean.

An example of a non-stationary or transient 
ow is the 
ow in the same jet at start-up.

Just after the 
ow from the pipe escapes the pipe nozzle for the �rst time, the jet issues into

a quite medium and the 
ow structures are quite di�erent than those observed at a later

time after the 
ow has settled down. If one is interested in the mean values of these transient

dynamics, they could be measured by repeating the start-up many times and accumulating

the 
ow data for variables of interest at the desired location and the same time elapsed from

the start. This is an example of ensemble averaging; repeating the experiment over and over

until the mean values are independent of the number of experiments performed. At this

point the mean values are said to have converged.

A homogeneous 
ow is one in which the properties of the 
ow do not vary with spatial

location. Since the statistics of the 
ow do not vary with spatial location, all mean quantities

for the 
ow are independent of location. If in addition, the 
ow is isotropic then the properties

of the 
ow do not vary with direction. In other words, the 
ow is invariant to a rotation in

coordinate system. Homogeneous 
ow is an idealization because boundary conditions such

as walls introduce inhomogeneities to the 
ow. The best example of homogeneous 
ow is

the 
ow behind a mesh in a wind tunnel. In the central region away from the tunnel walls,

the 
ow approaches homogeneous and isotropic conditions. Even in this case the turbulent

kinetic energy decays in the streamwise direction slowly so that the region of homogeneous

isotropic 
ow is con�ned to a small streamwise distance in the central region of the tunnel.

For incompressible 
ow, the turbulence is entirely determined from the velocity and pres-

sure �elds in the domain of interest at an instant in time. We de�ne a realization of tur-

bulence as being the entire velocity and pressure �elds at an instant of time. The �elds at

a later instant would represent a di�erent realization. Now if the 
ow is homogeneous the

mean values could be obtained from a single realization of the 
ow instead of averaging at

a single point in space over a long duration as was discussed earlier. The two techniques for

measuring mean values are expected to be equivalent in a homogeneous 
ow.

At this point three techniques for determining mean values of turbulence have been de-

scribed. Reynolds averaging describes the time invariant mean quantities of a stationary


ow as a function of position. Spatial averaging describes the spatial invariance of mean

values in a homogeneous 
ow that may or may not be stationary. Ensemble averaging is

well suited for transient 
ows and describes the mean values as a function of both space and

time.

The fourth technique for determining mean values is through the use of probability den-

sities of stationary processes. If the probability density of the 
ow variables is known for the

entire domain of interest, then all of the moments of the 
ow properties can be obtained from

the probability density. In practice, this probability density is diÆcult to determine and con-

tains more information than is desired. There are examples of where the probability density

is symmetric about its mean and an approximate normal distribution can be assumed. In
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this case all the moments of the 
ow can be determined from the �rst two moments.

This section summarizes the equations used to de�ne statistical averages and quantities

relevant to the analysis of turbulent 
ows and quantities that facilitate the evaluation of

turbulent 
ow simulations. A more comprehensive presentation may be found in [61].

2.6.1 Mean and Fluctuating Quantities

Consider the temporally and spatially varying quantity �(xi; t). Its Reynolds time average

is de�ned as

< �(xi) >= lim
�T!1

1

�T

Z
to+�T

to

�(xi; t
0)dt0: (2.49)

The variable �(xi; t) is said to be stationary if its mean values are independent of the starting

time to. In this case, the mean values of �(xi; t) are independent of time altogether.

With this de�nition any variable can be decomposed into its mean and 
uctuating com-

ponent as follows;

�(xi; t) =< �(xi) > +�0(xi; t) (2.50)

and obeys the following Reynolds averaging rules,

< �
0
> = 0 (2.51)

<< � >> = < � > (2.52)

< � > = < � ><  > + < �
0
 
0
> (2.53)

< �
0
<  >> = <  

0
< � >>= 0: (2.54)

In practice, time averages are approximated by the discrete summation,

< �(xi) >= lim
N!1

P
N

n=1 �n(xi; tn)�tnP
N

n=1�tn
(2.55)

where �tn is the time step increment for the nth time integration step and tn =
P

n

m=1�tm.

Let � represent a scalar quantity and let ui, (i = 1; 2; 3) represent the ith Cartesian

component of the instantaneous velocity �eld. The variance of a scalar is obtained by

� =< (�� < � >)2 >=< �
2
> � < � >

2 (2.56)

and the root mean square (r.m.s.) by �1=2: Similarly, the Reynolds stress tensor is obtained

by

Rij =< u
0

i
u
0

j
>=< uiuj > � < ui >< uj > (2.57)

and the turbulent kinetic energy is simply

k
0 =

1

2
< u

0

k
u
0

k
>=

1

2
(< ukuk > � < uk >< uk >): (2.58)

The turbulent scalar 
ux vector is

< �
0
u
0

i
>=< �ui > � < � >< ui > : (2.59)

26



The triple correlation between three independent scalars is obtained by

< �
0
 
0
�
0
>=< � � > � < � ><  >< � > (2.60)

�(< � ><  
0
�
0
> + <  >< �

0
�
0
> + < � >< �

0
 
0
>):

2.6.2 Higher Order Statistics

Higher-order moments of velocity di�erences and velocity derivatives have been used to

analyze isotropic turbulence. For homogeneous isotropic turbulence with zero mean velocity,

the velocity 
uctuations have a Gaussian probability distribution. Since this distribution is

symmetric, odd moments are all equal to zero. The nonzero moment higher than the variance

is the 
atness which obtains a value of roughly 3.0. The equations for skewness and 
atness

are (no summation of indices);

Si;0 =
hu3

i
i

hu2i i3=2
(2.61)

Fi;0 =
hu4

i
i

hu2i i2
: (2.62)

Derivative skewness and 
atness are de�ned as

Si;1 =

��
@ui

@xi

�3�
��

@ui

@xi

�2�3=2 (2.63)

Fi;1 =

��
@ui

@xi

�4�
��

@ui

@xi

�2�2 : (2.64)

Derivative skewness � �0:3��0:5 and 
atness � 3� 4 have been observed [5]. Analysis of

derivative statistics reveal behaviors of the numerical scheme and subgrid models associated

with the smallest resolved scales. Skewness and 
atness of velocity di�erences have also been

measured [5],

Si;� =
h(�ui)3i
h(�ui)2i3=2

(2.65)

Fi;� =
h(�ui)4i
h(�ui)2i2

(2.66)

where �ui = ui(xi + ri; t)� ui(xi; t) and ri = xi + r.
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2.6.3 Anisotropic Stress Tensor

An intrinsic distinction exists between isotropic and anisotropic stresses. The isotropic stress

is 2
3
k
0
Æij and the deviatoric isotropic part is

aij =< u
0

i
u
0

j
> �2

3
k
0
Æij: (2.67)

The normalized anisotropic tensor is de�ned as

bij =
aij

2k0
(2.68)

where k0 = 1
2
< u

0
k
u
0
k
> is the turbulent kinetic energy. It is readily seen that for isotropic

turbulence akk = 0.

2.6.4 Two-Point Correlations

The two-point one-time autocovariance of the 
uctuating velocity is de�ned as

Rij(ri; xi; t) =< u
0

i
(xi; t)u

0

j
(xi + ri; t) > : (2.69)

This is also referred to as a two-point correlation. From this, various integral length scales

can be de�ned. In particular the longitudinal integral length scale is

L11 � 1

R11(0; xi; t)

Z
1

0
R11(r1; xi; t)dr1: (2.70)

For homogeneous isotropic turbulence assuming periodic boundary conditions, two-point

correlations are calculated and used to estimate the integral length scales Lii which are the

longitudinal integral length scales in the xi directions respectively. These quantities are

determined from

L11 =
1

u
02
1

Z
1

�1

h
u1(x1; x2; x3; t)� u1(t)

i h
u1(x1 + r; x2; x3; t)� u1(t)

i
dr (2.71)

where the over line denotes a spatial average over the entire domain and Lii are functions of

time. For isotropy L11 � L22 � L33 and so lt = (L11+ L22+ L33)=3. The transverse integral

scale is estimated in a similar manner,

L12 =
1

u
02
1

Z
1

�1

h
u1(x1; x2; x3; t)� u1(t)

i h
u1(x1; x2 + r; x3; t)� u1(t)

i
dr (2.72)

In LES simulations, lt can be used to calculate the turbulent Ret, and the large-eddy

turnover time �t. Assuming the 
ow is homogeneous and isotropic, L11, L22 and L33 can be

calculated at each grid cell and then averaged over all grid cells to obtain a single value for

each direction.
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For homogeneous turbulence, Rij(ri; t) is independent of xi and the spatial information

contained in Rij(ri; t) can be re-expressed in spectral space using Fourier transforms. The

Fourier transform is,

�ij(ki; t) =
1

(2�)3

Z
1

�1

Z
1

�1

Z
1

�1

e
�ikiriRij(ri; t)dr1; dr2; dr3 (2.73)

and the inverse transform is

Rij(ri; t) =
Z
1

�1

Z
1

�1

Z
1

�1

e
ikiri�ij(ki; t)dk1dk2dk3: (2.74)

Setting ri = 0 yields the Reynolds stress tensor,

Rij(0; t) =< u
0

i
u
0

j
>=

Z
1

�1

Z
1

�1

Z
1

�1

�ij(ki; t)dk1dk2dk3: (2.75)

The turbulent kinetic energy as a function of the wave number amplitude is

E(k; t) =
Z
1

�1

Z
1

�1

Z
1

�1

1

2
j�ii(ki; t)jÆ(jkij � k)dk1dk2dk3 (2.76)

and its physical space representation is just

k
0 =

1

2
< u

0

i
u
0

i
>=

1

2
Rii(0; t) =

Z
1

0
E(k; t)dk: (2.77)

2.6.5 The One Dimensional Turbulent Energy Spectra

For spatially-evolving non-homogeneous 
ows it is appropriate to work in the frequency

domain. If the 
ow is stationary and mean velocity �eld is constant and much larger than

the velocity 
uctuations (i.e. < u >� u
0), Taylor's hypothesis may be used to relate the

frequency content of the 
uctuating signal to a length scale content,

< u
0

1u
0

1 >=

Z
1

0
E11(!)d! (2.78)

and E11(k1) =< u1 > E11(!).

In spatially-evolving 
ows where the 
ow is no longer homogeneous it is more convenient

to estimate an integral length scale from the time history of a single velocity component at

a point in the 
ow �eld. The length scales can be estimated from the single point auto-

correlation function de�ned such as follows

R11(� ) =
< u1(xi; t)u1(xi; t+ � ) >

< u
02
1 >

: (2.79)

The Eulerian integral scale is then determined by

T11 =
Z
1

0
R11d� (2.80)

and assuming Taylor's hypothesis is valid, L11 � T11 < u
02
1 >

1=2 [74].
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2.6.6 Favre Averaged Statistics

Analysis of 
ows with signi�cant 
uctuations in density whether caused by compressibility

or a rise in temperature are simpli�ed by introducing the Favre (mass weighted) average as

g
�(xi) =

�(xi; t)�(xi; t)

�(xi)
= lim

�T!1

1

�T�(xi)

Z
t+�T

t

�(xi; t
0)�(xi; t

0)dt0: (2.81)

The instantaneous variables are decomposed into average and 
uctuations

�(xi; t) =
g
�(xi) + �

00

(xi; t): (2.82)

Similar to the incompressible case, Favre-averages obey the following rules

f
�00 = 0 (2.83)ee
� = ~� (2.84)

��00 = 0 (2.85)

~� = ~� (2.86)

�00 = ��� ~�: (2.87)

The relationships between Reynolds-averaged and Favre-averaged quantities are

~� = ��+
�0�0

��
= ��+

�0�00

��
: (2.88)

In order calculate the Favre-averaged scalar 
ux of scalar c, �u00c00, the following identity

is used

�u00c00 = �gu00c00 = �uc� �eceu (2.89)

This is an important closure term in combustion modeling. The Reynolds-averaged expres-

sion becomes much more complicated due to the 
uctuating density component

�u0c0 = �uc� ���u�c� u�0c0 � c�0u0 � �0u0c0: (2.90)
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2.7 A Brief Discussion of Numerical Issues

No analytical solutions to the continuum form of the LES equations for any problems of

interest are known to the authors. All LES results are in fact solutions to some discrete

numerical representation of Eqs. (2.7) and (2.8) (e.g., �nite di�erence, control volume, �nite

element, etc.) on a speci�ed mesh, coupled with a particular closure model. Thus all of the

standard issues associated with numerical methods become intimately involved in any LES

calculation.

Our purpose here is not to provide a comprehensive description of the problems, as this is

entirely beyond the scope of this work. However, some introductory comments intended to

acquaint the reader with some of the key issues is felt to be important to provide the proper

context to the research and results described herein.

2.7.1 Mesh Re�nement, Explicit \pre�ltering", and Computational Cost

In discussing LES, it is useful to distinguish between the discretization length scale h, and the

�lter cuto� length scale �. If the ratio h=� is small, than the numerical error associated with

the solution decreases approximately as ( h
�
)n, where n is the order of the numerical method.

Because of this relationship between these two scales, there are two di�erent approaches to

LES mesh re�nement which can be pursued in order to obtain the \best" possible solution

for a given problem when one has �nite computational resources.

The �rst approach is to let h = �, and simply re�ne the mesh as much as possible for a

given problem. The rationale here is to resolve as much as possible on the mesh | thereby

minimizing the subgrid contributions to the overall global dynamics. Of course, as shown

above, under these conditions the numerical error at the smallest resolved scales is at its

maximum and, as will be discussed below, has been shown to be quite large. This leads to

serious questions about how valid the results are, or even how to interpret them. A rationale

sometimes given for accepting this ambiguity is that even if the smallest resolved scales are

poorly represented, they will (hopefully) contain only a small portion of the total kinetic

energy, and thus relatively large errors in the subgrid stress model may be acceptable.

The second approach is to use some means to control and reduce the ratio h

�
. The most

common method is usually called \pre�ltering" or \explicit �ltering". As explained by Lund

[50], the key step in this approach is to use an alternative de�nition of �ij (see Eq. 2.10) as

follows. Let

�ij = uiuj � g�ui�uj: (2.91)

where e() denotes a discrete approximation to the primary �lter, and where by implication,

the nonlinear advection terms has been decomposed as
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uiuj = g�ui�uj + (uiuj � g�ui�uj): (2.92)

Lund demonstrates that �ltering the nonlinear advection term in this way achieves an

explicit �ltering of the velocity �eld that limits the frequency content for all time to the

discrete �lter width.

Another method is e�ectively suggested by Mason et al. [52, 53] in the context of the

Smagorinsky model and the interesting interpretation they give for the Smagorinsky constant

Cs. They demonstrate that larger values of Cs correspond to indirectly imposing a �lter of

increasing larger length scale on the 
ow �eld.

In either case, if a suÆcient separation between the mesh and the �lter lengths is achieved,

than a mesh independent solution can, in theory, be obtained for any consistent numerical

method. Of course, the cuto� length scale must still be very small relative to the integral

length scale of the turbulent 
ow so that the \large" eddies are being resolved by the LES.

Unfortunately, the cost of doing pre�ltered LES on numerical grids suÆciently re�ned to

assure full numerical convergence is usually prohibitive. The cost of mesh re�nement in LES

can be illustrated by considering an LES of �xed �lter width �, and constant grid spacing

h. Because the number of nodes in each direction, as well as the time step (due to CFL

accuracy and stability factors) each scale approximately as h�1, the computational cost can

be thought of as roughly proportional to (h=�)�4. Thus cutting the mesh size h in half

increases the computational cost by a factor of approximately 16!

Because of this enormous computational cost penalty for mesh re�nement, practitioners

almost always seek to strike a balance between accepting some degree of error, so as to

a�ord the calculations, while at the same time controlling its magnitude, so that the solution

remains meaningful. How best to achieve this balance remains a topic of great interest and

much current research.

2.7.2 Numerical Error and LES Closure

Since all numerical methods introduce errors, it is important to understand the nature of

the di�erent kinds of approximation errors that are introduced and how they can a�ect an

LES. Three di�erent types of numerical error, and how they impact the e�ective LES model

are brie
y discussed next.

Dissipation error. Numerical dissipation acts to arti�cially (i.e. not due to physics)

reduce gradients along the coordinate direction where the numerical di�erencing is being

performed. As is discussed in most texts on numerical methods, it can be shown to be a

direct result of the even derivative terms in the truncation error, and is associated with what

is called numerical or arti�cial viscosity. It can also be thought of as a means of imposing a
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one-dimensional �lter in each coordinate direction.

When a subgrid model is used in LES but the mesh is not �ne enough to resolve the

velocity scales near the �lter cuto� length-scale, then the e�ective subgrid model and its

associated e�ective �lter are in fact due to the combined e�ects of the speci�ed model and

the numerical dissipation. This introduces problems as to how to interpret the results. From

a practical standpoint, this problem is usually addressed by attempting to determine how

important the a�ected scales are to the overall solution. For example, if one can demonstrate

that a large portion of the kinetic energy is contained within the scales that are well resolved

(i.e. not polluted by the numerical errors) then even if the smaller scales are corrupted, the

overall simulation should be valid. However, if a dynamic subgrid closure model is used that

is based on using information from the smallest resolved scales (those most a�ected by the

numerical errors), then the entire simulation can become suspect.

Because the e�ect of numerical dissipation has similarities to the eddy viscosity generated

by a subgrid model, some authors have proposed and tested LES models based entirely on the

arti�cial dissipation associated with speci�c numerical schemes (e.g. [58, 22, 23]). However,

this approach is controversial because of the one-dimensional nature of the e�ective �lters

applied. Since each term in the Navier-Stokes equations is acted on by a distinctly di�erent

one-dimensional �lter, the basic assumptions associated with deriving the LES equations are

not satis�ed, leading to ambiguities concerning the meaning of the results.

Finally, we note that dissipation errors are not con�ned to spatial di�erence operators only.

Lower order time integration schemes can also contribute signi�cantly to the numerical error

introduced into an LES.

Dispersion error. Numerical dispersion acts to distort spatial and temporal phase

relationships | which typically show up as \wiggles" near regions of under-resolved sharp

gradients. Dispersion errors are a result of the odd derivative terms in the truncation error

of a given approximation. Numerical dispersion is obviously undesirable in LES simulations

as this would corrupt the turbulent 
uctuations of the real 
ow.

Spectral aliasing error. When the nonlinear convective term in the LES equations

(i.e. the 2nd term in Eq. (2.11)) is numerically computed in discrete physical space (as com-

pared to Fourier space) of �nite dimension, spurious high frequency information is generated

which can corrupt the resolved frequency response. This error is called an aliasing error.

As suggested by Sagaut [66], this error can be by illuminated by considering two discrete

functions u and v represented by N degrees of freedom. At the point of subscript j, the

expansions can be expressed as:

uj =

N=2�1X
n=�N=2

ûne
(i(2�=N)jn)

; vj =

N=2�1X
m=�N=2

v̂me
(i(2�=N)jm)

j = 1; N : (2.93)
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The Fourier coeÆcient of the product wj = ujvj (no sum on j) separates into the form:

wk =
X

n+m=k

ûnv̂m +
X

n+m=k�N

ûnv̂m : (2.94)

The last term on the right-hand side represents the spectrum aliasing error.

2.7.2.1 Discussion In an e�ort to better quantify the relative magnitude of the the error

terms as compared to the SGS stress, Ghosal [25] performed a non-linear analysis of the

numerical error for isotropic homogeneous turbulent 
ow where the energy spectrum was

approximated by the Von Karman model. The numerical error was de�ned as the di�erence

between a given numerical solution and an \optimum" discrete solution | de�ned as the

solution obtained using a full spectral method. In the analysis, both the subgrid models

and the time integration were assumed to be exact so as to clearly distinguish the numerical

error.

The results of this analysis are somewhat discouraging in that they suggest that numerical

discretization errors dominate the subgrid terms for mesh resolutions and numerical methods

typically used. Only when using very high order numerical schemes and or a pre�ltering

technique (to decouple the �lter cuto� length from the discretization length scale) does the

SGS stress govern the solution dynamics. Ghosal's analysis is often quoted in the literature

(e.g. [21]) and has stirred signi�cant discussion because, in some ways, its results seem at

odds with the experiences of many LES practitioners. In this context the following statement

made by Sagaut concerning this analysis is useful as it probably typi�es the current somewhat

cautious view of the community with respect to these issues:

\. . . It should be noted here that practical experience leads us to less pessimistic

conclusions than the theoretical analyses: large eddy simulations performed with a scheme

accurate to second order show a dependency with respect to the subgrid model used. The

e�ects of these models are not entirely masked, which justi�es using them. However, no

precise quali�cations exists today of the information loss due to the use of a given scheme.

These observations are made empirically, case by case". ([66] pg. 218)

2.7.3 Comments on LES with Unstructured, Irregular Grids

Up to the present, most LES calculations have been performed on regular \structured"

grids. There are both numerical and theoretical reasons why this is so. From a numerical

standpoint, codes based on structured meshes can (more easily) be made computationally

very eÆcient (i.e. they run fast), they are typically easier to write and debug, and high-

order numerical schemes are available and well understood for these types of meshes. From

a theoretical standpoint, unless special steps are taken, an irregular mesh implicitly imposes

a non-uniform �lter which does not commute with di�erentiation, and therefore invalidates

the assumptions used in deriving the LES equations themselves.
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Despite these challenges, in order to do LES of turbulent 
ows in complex 3-D geometries,

the ability to use unstructured, irregular meshes may be unavoidable. As both the compu-

tational speed of computers and the desire to do such problems has increased (see [27]), a

number of researchers have begun actively working in this area [75, 51]. Interestingly, an

additional motivation for this work is the potential cost savings associated with adaptive

mesh re�nement, which for LES may be especially useful near walls [31]. We note that this

work is of particular interest to the �nite element community where improved methods for

CFD and the use of unstructured grids has made possible the calculation of 
ows in very

complex geometries with relative ease.

Later in this report, we discuss the implementation and testing of a variety of LES models

into MPSalsa, a �nite element code which is designed to use unstructured grids. In some

applications described the actual grid used in the simulations will be a regular, uniform

grid which could have been used with an structured-grid code. However, in some cases it

is not. Thus an important aspect of the work described herein relates to the development

of numerical implementations and LES utilities that can be used on irregular grids. Of

particular note is the problem of discrete �ltering, which is discussed next.

2.7.4 Discrete Filtering

As has been previously noted, a variety of LES models require a secondary �ltering operation,

which must be performed numerically on the resolved mesh. These include the dynamic LES

models (Sec.s 2.5.1.3 and 2.5.1.4), scale similarity models (Sec. 2.5.2), any approach that

explicitly models the Leonard stress terms (Eq. 2.13), and certain pre�ltering techniques

(Sec. 2.7.1). In each case we have the problem of numerically approximating the �ltering

(see Eq. 2.3) of a �ltered quantity, i.e.

e��(x; t) = Z
D

��(x; t)G(x� z; e�) dz; (2.95)

where e� denotes the �lter width of the second �lter.

Many well understood numerical techniques are available for doing numerical quadrature.

However, in the context of LES we typically desire to evaluate this integral when e� is ap-

proximately twice the value of � (the primary �lter width), use only an absolute minimum

number of quadrature points (to minimize cost), and assure that the discrete �lter commutes

with di�erentiation (at least to some known order). These constraints require careful con-

sideration and lead to special challenges when the numerical mesh is irregular in shape and

when the integral must be evaluated near boundaries.

Marsden et al. [51] provide a discussion of very recent work in this area. Here, we develop

a di�erent method that is based on reproducing kernel particle methods (RKPM). We also

discuss our implementation of a lumped mass projection (LMP) technique for �ltering that
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has been used in the �nite element LES literature [31].

2.7.4.1 Filtering based on Reproducing Kernel Particle Methods We begin by describing

discrete �ltering in the context of the multiple scale decompositions work of Lui et al. [47,

48, 46]. For simplicity, we begin the discussion with the simpler one-dimensional case (the

formulation can be extended to multi-dimensions). In one dimension, the discrete �ltering

operation may be written as,

u
2a(x) =

NnpX
i=1

u
a(xi)w

2a
i
(x) (2.96)

where w2a
i
(x) is the �lter (kernel) function centered at grid point i and evaluated at location

x. The dilation parameter, 2a, describes the width of (and hence scale represented by) the

�lter, Nnp is the number of �lter functions, w2a
i
, which have x in their support, and u2a is

the �ltered approximation to ua at scale 2a.

In general, it is necessary that the �ltering operation described in Eq. (2.96) commute

with the spatial di�erential operators of the Navier-Stokes equations for explicit �ltering

of these equations to be successful. Although it is not generally possible to reduce these

commutative errors to zero, they can be controlled by enforcing \moment conditions" when

generating the kernel functions. We consider a class of �lters that satisfy the following

moment conditions,

m0(x) = 1 (2.97)

mk(x) = 0; k = 1; :::; n� 1; (2.98)

mk(x) 6= 0; k � n: (2.99)

imposed over the domain 
. In Eq. (2.97){( 2.99), n is the order of the commutation

error associated with �ltering of the spatial �rst-derivative operator, and the moments are

calculated as,

mk(x) =
NnpX
i=1

(x� xi)
k
w
2a
i
(x): (2.100)

It remains to determine w2a
i
(x) such that Eq. (2.97){ (2.98) are satis�ed. Liu and co-

workers have developed a methodology (the Reproducing Kernel Particle Method - RKPM)

to generate kernel functions that satisfy the moment conditions to any order (n� 1) for an

arbitrary placement of nodes as typi�ed by unstructured grids on �nite domains, 
, with

complex geometry.

The RKPM formulation begins with the notion of a continuous kernel approximation of

a function, UR, on a domain 
y,

U
R;a(x) =

Z

y

U(y)�a(x� y)d
y; (2.101)
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where �a is the kernel function and UR;a is a continuous approximation to U at some scale

a [49, 47]. A wide variety of kernel functions have been used including cubic B-splines and

gaussian distributions, though ideally, the kernel has compact support. Kernel functions in

multiple dimensions may be generated by taking the tensor product of the one-dimensional

forms, producing functions with rectangular (two-dimensional) or cubic (three-dimensional)

support.

In order to address discrete problems, numerical quadrature (e.g., trapezoidal or particle

integration) is used to evaluate Eq. (2.101) as

U
h;a(x) =

nX
i=1

di�
a(x� xi)Vi =

nX
i=1

di�
a

i
(x)Vi; (2.102)

where n is the total number of nodes whose kernel functions incorporate x within their

support, Uh;a is the (continuous) analogue of UR;a arising from the discretization, and di and

Vi are the coeÆcients and volumes respectively associated with particle i [47]. In general, the

coeÆcients, di are di�erent from the value of the function at particle i because the RKPM

basis is non-nodal (i.e., it does not posses the Kronecker-delta property).

The remaining presentation requires a choice of domain dimensionality. For clarity, we

consider a two-dimensional space, although results may be expanded to higher (or lower)

dimensions. Consideration of two-dimensional space allows inclusion of details not obvious

in a one-dimensional space.

In general, Eq. (2.102) will not exactly reproduce an arbitrary polynomial. To allow for

accurate reproduction of polynomials to degree p, a modi�ed kernel function �
a

i
is introduced

which satis�es the reproducing conditions,

nX
i=0

x
k

i
y
l

i
�
a

i
(x)Vi = x

k
y
l 0 � k; l � p (2.103)

Application of Eq. (2.103) with p = 1 results in bi-linear reproducing conditions. That is

[1; x; y; xy] are reproduced. In many cases reproduction of xy is not enforced and only linear

consistency is considered (this is the approach taken in the discussion which follows). The

motivation for giving up the xy term will become clear later.

The modi�ed kernel function, �
a

i
, for linear consistency (p = 1) in a two-dimensional

spatial domain, may be generated by assuming its form to be an expansion of the original

kernel function �a
i
,

�
a

i
(x) =

pX
k+l=0

�k;l(x)�
a

i
(x)(x� xi)

k(y � yi)
l 0 � k; l � p (2.104)

where �k;l(x) is a set of correction functions that vary continuously within the domain [47, 48].

This modi�ed kernel function replaces �a
i
(x) in Eq. (2.102) yielding

U
h;a(x) =

NnpX
i=1

di�
a

i
(x)Vi: (2.105)
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Substituting Eq. (2.104) into Eq. (2.105) and requiring the resulting equation to satisfy

the desired reproducing conditions of Eq. (2.103) results in,

�0;0(x)
nX
i=1

�
a

i
(x)�Vi + �1;0(x)

nX
i=1

�
a

i
(x)�Vi + �0;1(x)

nX
i=1

�
a

i
(x)�Vi = 1; (2.106)

�0;0(x)
nX
i=1

xi�
a

i
(x)�Vi + �1;0(x)

nX
i=1

xi�
a

i
(x)�Vi + �0;1(x)

nX
i=1

xi�
a

i
(x)�Vi = x (2.107)

and,

�0;0(x)
nX
i=1

yi�
a

i
(x)�Vi + �1;0(x)

nX
i=1

yi�
a

i
(x)�Vi + �0;1(x)

nX
i=1

yi�
a

i
(x)�Vi = y: (2.108)

It is apparent from Eq. (2.106) through (2.108) that determination of �
a

i
(x) is dependent

upon �nding the set of �'s which enforce the reproducing conditions Eq. (2.103). We begin

by de�ning the moments of the original kernel functions as,

mk;l(x) =
nX
i=1

�k;l(x)(x� xi)
k(y � yi)

l�Vi: (2.109)

Substituting Eq. (2.109) into Eq. (2.106) yields,

�0;0(x)m0;0(x) + �1;0(x)m1;0(x) + �0;1(x)m0;1(x) = 1: (2.110)

Multiplying the RHS of Eq. (2.107) and Eq. (2.108) by the LHS of Eq. (2.106) and

incorporating Eq. (2.109) yields,

�0;0(x)m1;0(x) + �1;0(x)m2;0(x) + �0;1(x)m1;1(x) = 0; (2.111)

and,

�0;0(x)m0;1(x) + �1;0(x)m1;1(x) + �0;1(x)m0;2(x) = 0: (2.112)

Thus, the �'s may be found by solving the matrix system,

M(x)b(x) = P(0) (2.113)

where,

M(x) =

2666666664

m0;0(x) m1;0(x) m0;1(x)

m1;0(x) m2;0(x) m1;1(x)

m0;1(x) m1;1(x) m0;2(x)

3777777775
; (2.114)

PT(0) = [1; 0; 0] (2.115)

and,

bT(x) = [�0;0(x); �1;0(x); �0;1(x)]: (2.116)

The matrix system of Eq. (2.113) must be solved at every discrete point for which the

reproduced function, Uh;a, is desired. In the context of LES �ltering, solution to Eq. (2.113)

is required for all nodal points in the domain.

Appendix A provides a description of the spectral behavior of RKPM �lters.
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2.7.4.2 Filtering based on Lumped Mass Projection A natural explicit test �lter for un-

structured �nite element codes (such as MPSalsa [68, 69]) is what can be called a lumped

mass projection to the nodes. This has been used elsewhere in the literature [31], and is

convenient in that it uses the �nite element basis functions already coded. Given some

scalar quantity �� which is resolved on the mesh at each grid point, e�� can be computed as

the L2-projection of �� at node point i by

e��
i
=

P
e

R

e
�i
��d
P

e

R

e
�id


: (2.117)

Here, �i is the standard polynomial �nite element basis function, the summation is over

all elements that contain node i, and integration is over each element that supports node i.

The authors are not aware of any analysis evaluating the commutation errors associated

with this �lter for nonuniform or irregular meshes. However, it appears to be commonly

assumed that if the mesh size changes smoothly over the domain and changes between

neighboring elements are small (of order a few percent), then the errors introduced are

acceptably small.

2.8 The Near-wall Resolution and Modeling problem

LES typically works well when the mesh resolution used on a given 
ow problem is such

that the kinetic energy associated with the resolved eddies is a large fraction of the total

kinetic energy in the 
ow. Unfortunately, in turbulent wall-bounded 
ows the large, energy

containing eddies (from a local perspective) typically scale as the distance from the wall. As

the Reynolds number increases and the viscous sub-layer shrinks, the number of grid points

required to resolve the near-wall eddies increases dramatically. This near-wall resolution

requirement is possibly the most severe bottleneck in applying LES to turbulent 
ows of

practical interest. As a result, a variety of modeling approaches have been developed.

The ideal case of a steadily forced turbulent boundary layer over a 
at wall exhibits a

universal structure embodied in the `law of the wall,' and has provided the basis for many

early modeling approaches. Because several authors, including Cabot [8], Ciofalo [11], and

Sagaut [66], provide excellent reviews of the variety of near-wall models that have been

proposed, an additional review will not be provided here. However, as explained by Baggett

[2], these approaches typically replace the no-slip boundary condition with an approximate

boundary condition, such as the speci�cation of the wall stress. Unfortunately, complex


ows of practical interest often do not conform well to idealized near-wall behavior. Near-

wall 
ows are subject to unsteady forcing and (potentially) multiphysics processes (thermally

induced property variations, gravitational and other body forces, multiphase couplings, etc.)

whose dynamic interactions with the bulk 
ow are not captured by currently available wall
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treatments. Thus, it is not surprising that current modeling approaches are considered

inadequate for many problems of interest to the community [32].

A more recent class of modeling approaches is based on the idea of merging LES with

RANS to model the near-wall region [2, 57]. This is basically an extension of the idea

Schumann [67] suggested some years ago, but instead of using a simple mixing-length eddy

viscosity, these models use more sophisticated procedures to compute the near-wall eddy

viscosity. In essence, these models apply an anisotropic near-wall �lter in which the wall-

normal �lter width becomes very small, but the wall-parallel �lter width remains large.

Near-wall turbulent transport is then incorporated primarily through a modi�ed di�usion

mechanism. A disadvantage of this approach is that near-wall turbulent 
uctuations are

suppressed, and the proper dynamic coupling between the wall and the bulk 
ow is diÆcult

to achieve.

Later in this report we will discuss our work to explore an approach that, from a �ltering

standpoint, can be thought of as similar to the LES/RANS approach just mentioned, where

the wall-normal �lter width becomes small, but the wall-parallel �lter width remains large.

However, instead of coupling to a time/ensemble averaged RANS model, this approach is

based on the idea of coupling to the ODT model of Kerstein [35], a fundamentally unsteady

model. In the near-wall region, �nely resolved ODT lines are embedded within a coarse LES

mesh and the ODT evolution equations capture �ne-scale temporal and spatial variations (in

one direction) of the three-component velocity �eld. Near-wall turbulent transport is mod-

eled through the combined e�ect of a sequence of 
uid-element rearrangements (called eddy

events), without the introduction of an eddy viscosity. LES/ODT coupling is bi-directional

and occurs both through the direct calculation of the subgrid turbulent stress by temporally

and spatially �ltering the ODT-resolved momentum 
uxes (up-scale coupling), and through

the LES-resolved mean pressure and velocities impacting the ODT behavior (down-scale

coupling). The overall goal of this work is to develop and demonstrate a method that avoids

the overwhelming computational expense of a �nely resolved 3-D mesh in the near-wall re-

gion, and yet provides well-resolved near-wall dynamic behavior for high-Reynolds number

wall-bounded 
ows.
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3 Implementation and Testing of LES Models and Utilities in

MPSalsa

Because of the large scale computational cost of LES, most LES codes have been written

using data structures that assume a structured grid type of computational domain. Although

useful for model development and evaluation, such codes cannot treat the complex geometries

that may occur in many engineering problems of interest. Furthermore, many LES models

in use today implicitly assume uniform meshes in order to preserve the property that the

�ltering operation commute with di�erentiation. Irregular meshes violate this assumption,

introducing the need for using more general LES models and �ltering techniques.

MPSalsa [68, 69] is an unstructured-grid �nite-element code developed at Sandia for

simulating both reacting and non-reacting 
ow. Unfortunately, the code has not yet been

optimized for performing LES. However, the code is written to eÆciently use Sandia's large

massively parallel computers, and thus is a suitable code for testing a variety of unstructured

grid LES concepts and models. In this project, signi�cant revisions and modi�cations have

been made in MPSalsa to incorporate a range of LES subgrid models, unstructured grid

�lters, statistics gathering routines and new boundary conditions necessary for model testing

and development.

Models and utilities that have been incorporated to date include the following.

(1) Two constant coeÆcient subgrid models, the Smagorinsky model and the Ksgs model,

were implemented. The Ksgs model requires the solution of an additional transport equation

for the "sub-grid-scale" turbulent kinetic energy (i.e. Ksgs).

(2) Dynamic coeÆcient versions of the two LES subgrid models (Smagorinsky, Ksgs)

were implemented. These models require explicit �ltering of the resolved �eld in order to

dynamically compute the local values of the model coeÆcients as they evolve in time and

space.

(3) Two di�erent �ltering approaches have been implemented: the "lumped mass pro-

jection" (LMP) �lter, and a �lter based on "reproducing kernel particle method" (RKPM)

ideas. The LMP �lter has been used in other unstructured grid LES codes but does not con-

trol commutivity errors on irregular meshes. The RKPM �lter is a new �ltering approach

which allows one to control commutivity errors on irregular meshes.

(4) A new \conserved scalar - laminar 
amelet" LES turbulent combustion model has been

implemented and tested that has the unique feature of not assuming statistical independence

between mixture fraction and scalar dissipation. This model compliments the EDC model

of Magnussen that had been previously coded in MPSAlsa.

(5) A set of routines were written to compute and store the important time-averaged

statistical quantities necessary to evaluate the results of the LES simulations after they are

completed.
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(6) A set of routines were written to compute and store at nodes (as auxiliary variables)

gradient-based quantities needed for LES. For example, the eddy viscosity is typically com-

puted based on the shear stress tensor (whose components are all velocity gradients).

(7) Code revisions were completed to treat 3-D periodic boundary conditions (non-trivial

for unstructured grid, parallel code). These boundary conditions are required to simulate

the classic experiment of Comte-Bellot and Corrsin [12] on the decay of isotropic turbulence.

In addition to the MPSalsa code infrastructure work described above, a set of separate LES

post-processing utilities compatible with the EXODUS II database standard were written

and tested. They include the following.

(1) NODAL STATS: A code for computing time avg. moments for stationary data (16

di�erent quantities, stored in 3-D or 2-D as appropriate),

(2) ISO STATS: A code for computing the statistics for spatially homogeneous 
ows, and

(3) EXO PERIODIC: A code for adding the redundant node data to the special EXODUS

�les set up for periodic boundary conditions. Without this post processing, 
ows with

periodic boundary conditions cannot be visualized with available tools such as AVS express

or TECPLOT.

With the MPSalsa LES model infrastructure in place, and the post processing utilities

written, numerical experiments were begun to test and evaluate the performance of di�erent

models and �lters. To date, all models and �lters have been tested by doing simulations of

the classic experiment of Comte-Bellot and Corrsin on the decay of isotropic turbulence. This

experiment allows one to check how well a particular model and �lter, on a mesh of a given

resolution, captures two important things, (1) the correct overall decay of turbulent kinetic

energy, and (2) the evolution of energy at di�erent length scales (i.e., the energy spectrum in

wave number space). Mesh re�nement studies have been performed by varying the grid from

163 to 1283. These results have demonstrated the improved predictive capabilities of the

dynamic models (over the constant coeÆcient models) and illustrated the degrading e�ects

of under-resolved numerical grids. This problem has also demonstrated the di�erence in

e�ective �lter width between the LMP �lter and the RKPM �lter.

A model for simulating non-premixed turbulent combustion based on the 
amelet ap-

proach and scale-similarity mixing models has been developed and implemented. An 2-D

axisymmetric simulation of a buoyant plume �re (burning methanol) was conducted and

comparisons were made with experiments and other Sandia codes. The results demonstrate

the ability to capture the instabilities that lead to 
ame "puÆng", the code's ability to

simulate 
ows with very high density ratios, and ability to simulate complex unsteady cou-

pled physics problems using the �nite element method on unstructured grids. A fully three

dimensional simulation is planned.

Details of this work are given in the following subsections.
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3.1 LES Subgrid Models in MPSalsa

3.1.1 Standard Smagorinsky

The standard Smagorinsky model as described in Section 2.5.1.1 of this report has been

implemented into MPSalsa. The Smagorinsky constant CS is a compiled value set at 0.1.

The model is activated by inserting the following lines in the MPSalsa input �le under the

\Turbulence Model Speci�cations" section:

Turbulence Model = SM

The model does not require any special boundary conditions, and output is speci�ed in the

standard way.

3.1.2 Standard Ksgs

The Ksgs model as described in Section 2.5.1.2 of this report has been implemented into

MPSalsa. In this model the following three constants must be prescribed, C� ; Ck; C". The

compiled values for these three constants are currently set to

C� = 0.0854,

Ck = 1.0, and

C" = 0.916 .

The model is activated by inserting the following lines in the MPSalsa input �le under the

\Turbulence Model Speci�cations" section:

Turbulence Model = LES-k

Since an additional transport equation for Ksgs is being solved, appropriate boundary con-

ditions for this equation, and any desired output must be speci�ed in the input �le in the

standard way.

3.1.3 Dynamic Smagorinsky

The dynamic Smagorinsky model as described in Section 2.5.1.3 of this report has been

implemented into MPSalsa. The model is activated by inserting the following lines in the

MPSalsa input �le under the \Turbulence Model Speci�cations" section:

Turbulence Model = DYN-SM
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The model does not require any special boundary conditions, and output is speci�ed in the

standard way. However, because the dynamic model requires an explicit �ltering operation

(in order to compute the dynamic constant), the user may add the following line to specify

the use of lumped mass projection type �lter

LES Filter Type = LMP

or may specify �ltering based on the RKPM approach with

LES Filter Type = RKPM

Based on the analysis of Lund [50], the ratio of the test �lter width e� to the implicit �lter

� is 2.0 and
p
12 for the LMP and RKPM �lters respectively.

The default value used in the MPSalsa is the LMP �lter. Both of these �ltering approaches

are described below in Section 3.2.

3.1.4 Dynamic Ksgs

The Ksgs model as described in Section 2.5.1.4 of this report has been implemented into

MPSalsa. The model is activated by inserting the following lines in the MPSalsa input �le

under the \Turbulence Model Speci�cations" section:

Turbulence Model = DYN-LES-k

Since an additional transport equation for Ksgs is being solved, appropriate boundary con-

ditions for this equation, and any desired output must be speci�ed in the input �le in the

standard way. Also, because the dynamic model requires explicit �ltering operations, the

user may add the following line to specify the use of lumped mass projection type �lter

LES Filter Type = LMP

or may specify �ltering based on the RKPM approach with

LES Filter Type = RKPM

Based on the analysis of Lund [50], the ratio of the test �lter width e� to the implicit �lter

� is 2.0 and
p
12 for the LMP and RKPM �lters respectively.

44



The default value used in MPSalsa is the LMP �lter. Both of these �ltering approaches

are described below in Section 3.2.

3.2 Explicit LES Filtering options in MPSalsa

As described in Section 2, there are a variety of LES models which require a secondary

�ltering operation. Currently in MPSalsa, the two dynamic LES models (Sec.s 2.5.1.3 2.5.1.4

are the only models requiring a second �lter.

Two di�erent discrete �lters have been implemented; the "lumped mass projection"

(LMP) �lter, and a �lter based on "reproducing kernel particle method" (RKPM) ideas.

3.2.1 Lumped Mass Projection (LMP) Filtering

As explained in 2.7.4.2, the LMP �lter is a natural explicit test �lter for unstructured �nite

element codes in that it is based on the �nite element basis functions already coded.

This �lter has been implemented into MPSalsa and two point gauss quadrature is used

evaluate the integrals in Eq. 2.117. LMP is the default �lter for the dynamic LES subgrid

models if nothing is speci�ed by the user in the input �le. It can be directly speci�ed by the

user by adding the following line to the MPSalsa input �le under the \Turbulence Model

Speci�cations" section:

LES Filter Type = LMP

3.2.2 Reproducing Kernel Particle Method (RKPM) Filters

The RKPM �lter described in Section 2.7.4.2 has been coded into MPSalsa. When activated,

this requires a special preprocessing step where the local weights are calculated based on the

neighbor node locations (see Eqs. 2.111 - 2.116). It is speci�ed by the user by adding the

following line to the MPSalsa input �le under the \Turbulence Model Speci�cations" section:

LES Filter Type = RKPM
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3.3 Conserved Scalar - Laminar Flamelet SGS Combustion Model

In chemically reacting 
ows, additional transport equations need to be solved in order to

specify the thermochemical state of the mixture. Depending upon the assumptions of the

particular combustion model being used di�erent quantities may be solved for. Here we

provide a brief description of a conserved scalar - laminar 
amelet subgrid combustion model

for turbulent nonpremixed 
ames that was implemented and tested in MPSalsa as part of

this work.

3.3.1 Model Description

In this model additional transport equations are numerically solved for the �ltered tempera-

ture �T and the �ltered mixture fraction �Z. The �ltered temperature equation can be written

as

@(�Cp
�T )

@t
+

@

@xj
(�Cp

�T �uj) =
@

@xj

"
(k +

�s

Prt
)
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@xj

!#
+

NsX
s=1

hsWs _!s + _Q (3.1)

where Cp is the speci�c heat, k is the thermal conductivity, Prt is a turbulent Prandtl

number, hs is the speci�c enthalpy of of formation of species s, Ws is the molecular weight

of species s, _!s is the volumetric production of species s, and _Q a volumetric energy source

term.

The �ltered mixture fraction equation can be written as

@(�� �Z)

@t
+

@

@xj
(�� �Z�uj) =

@

@xj

"
(Dm +

�s

Sct
)

 
@ �Z

@xj

!#
: (3.2)

where Dm is the species di�usivity and Sct is a turbulent Schmidt number.

The mixture fraction, which is the mass fraction of elemental fuel species in a given 
ow

sample, is this model's \conserved scalar", in what is more generally called a conserved scalar

approach. This approach is useful under conditions when chemical reaction rates are much

faster than the rate at which reactants are mixed.

The particular model described here is based on experimental observations of laminar


ames [6] which showed that major species concentrations collapsed to a single curve when

plotted versus mixture fraction. These relationships between species mass fractions and the

mixture fraction are called state relationships, and are written in the form

Ys = Ys(Z) (3.3)

where Ys and Z are the mass fraction of species s and the mixture fraction, respectively. For

modeling purposes, simple polynomial curve �ts are used to approximate the experimental

data.
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If species di�usivities are assumed equal, then Eqs. 3.3 can be substituted into transport

equations for Ys (not shown here) to obtain the following expression for the reaction rate of

each species s:

_!s = �1

2
��
d
2
Ys

dZ2
(3.4)

where the scalar dissipation rate � is de�ned as

� = 2Dm

@Z

@xj

@Z

@xj
(3.5)

and Dm is the species di�usivity.

In LES, the 
ame is typically not spatially resolved. Therefore, in order to incorporate

a conserved scalar approach it is assumed that at the subgrid level there exists a statistical

ensemble of laminar di�usion 
amelets each satisfying the universal state relationships. The

average chemical production rate of this ensemble may then be found by integrating Eq. (3.4)

over the joint PDF of mixture fraction and scalar dissipation rate, PZ�.

_!s = �1

2

Z
�max

0

Z 1

0
PZ��(�)�

d
2
Ys(�)

d�2
d�d� (3.6)

This joint PDF represents the probability of �nding Z and � in a subgrid volume weighted

by a �ltering function at a particular point in space and time.

In contrast to an earlier model initially tested that assumed statistical independence

between the mixture fraction and the scalar dissipation rate [15, 16] the current model does

not make this assumption. Details of its derivation are presented elsewhere [16] and yield

the following analytical expression for the mean reaction rate:

_!s = �1

2
Cs��(zst)

DF (Zst)

Dt
(3.7)

where DF (Zst)

Dt
is a Lagrangian derivative that requires explicit calculation locally in both

time and space for the LES.

In addition, the �ltered mass fraction is required for computation and found by simply

integrating the state relationships over the PDF of mixture fraction, i.e.

~Ys =
Z 1

0
PZ(�)Ys(�)d�: (3.8)

In MPSalsa the assumed shape of the PDF was chosen to be a beta function, which leads

to an equation of the following form

_!s =
1

2
(b2 � b1)��(zst)

D

Dt

Z
Zst

0
I�(�; �1; �2)d� (3.9)

for the �ltered chemical production rate.

47



The assumed beta PDF (see [14, 16] for details) requires the speci�cation of the the subgrid

variance gz002 in addition to the mean mixture fraction. In this model a scale similarity model

is used to compute gz002 as follows:
g
z00

2 = �
2
z
= (f~z~z � ~~z~~z): (3.10)

3.3.2 Model Activation in MPSalsa

When performing an LES calculation in MPSalsa, the conserved scalar - laminar 
amelet

model can be activated by inserting the following lines in the MPSalsa input �le under the

\Turbulence Model Speci�cations" section:

Turbulent Combustion Model = 
amelet

Number of Flamelet Species = 5

The �rst line speci�es the turbulent combustion model. If the name speci�ed is \
amelet",

then the second line must be included in order to specify the number of 
amelet species

(which in this example is �ve). Appropriate material properties, boundary conditions, and

output is speci�ed in the standard way.

3.4 Gradient Based Auxiliary Variables in MPSalsa

Vorticity and strain rate tensor are two examples of auxiliary variables that are important to

the analysis of turbulent 
ows. Since these variables are functions of gradients, and gradients

are unde�ned at the nodes, a special procedure is required to estimate these quantities. Vol-

ume (area in 2-D) average approximations to the gradients are reconstructed by integrating

over all the elements that support a given node,

rui =
P

e

R

e
�irud
P

e

R

e
�id


(3.11)

Here, �i is the standard polynomial �nite element basis function (linear in MPSalsa), the

summation is over all elements that contain node i, and integration is over each element

that supports node i. In MPSalsa, evaluation of the volumetric integrals is performed by

standard two-point Gaussian quadrature.

This weighted average is sometimes referred to as a lumped mass projection [31], and

is similar to the spatial �lter described above in Section 2.7.4.2. When gradient based

auxiliary variables are requested this procedure is conducted and these variables are output

in the auxiliary output �le. A list of all gradient based auxiliary variables that MPSalsa

recognizes appears in the �le rf salsa.inp, which is part of the MPSalsa distribution.
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3.5 Statistics Gathering in MPSalsa

It should not be understated that turbulent 
ows are non-deterministic and the "solutions"

from DNS and LES are most meaningful in the form of statistical quantities derived from

the numerical solutions. Indeed, the amount of data created from simulations is enormous

and one would quickly become overwhelmed if not for meaningful data reduction techniques.

Two methods have been developed for generating statistics from data obtained from sim-

ulations run with MPSalsa . The �rst method is designed for stationary (in time) and

ensemble averaged transient 
ows, having zero, one or two periodic boundaries. A postpro-

cessing code called NODAL STATS is used to compute the �nal moments. Moments of the

"raw" data are generated using Eqs 2.55 - 2.60. In MPSalsa, stationary data is stored in

an auxiliary variable �le. The �le is created prior to the simulation using a utility called

"add var". The auxiliary variable �le contains the desired summations (eg. < u >, and

< u � u >) to compute the stationary moments of the data. MPSalsa recognizes strings and

stores the data associated with a particular string as a running sum. The summations are

computed at each node after every time step. The data is output at a user de�ned frequency,

and the variable is set to zero in order that a new summation can begin. At the end of a

simulation, NODAL STATS is run to combine the output and divide by the time duration.

NODAL STATS queries the data and automatically determines what moments can be cal-

culated. It then calculates all the moments, creates a new EXODUSII �le and writes all

the moments to the new �le. In other words, all time step data is reduced to a single �eld

on the same mesh, independent of time. This �le can then be manipulated to produce line

plots, for example. A list of the summation variables that MPSalsa recognizes appears in

the rf salsa.inp �le which is part of the MPSalsa distribution.

The second method for generating statistics from unsteady MPSalsa data is designed

for spatially homogeneous 
ows where all three boundaries are periodic. In this case, the

data is assumed to be stationary in space, but evolving in time. Therefore, no auxiliary

variables and no auxiliary variable �le need to be de�ned. Instead, all statistical quantities

are derived from the nodal unknowns that de�ne the problem, (i.e. pressure, velocity)

Nodal unknowns are output at a user de�ned frequency. Then a postprocessing step is run

using ISO STATS. ISO STATS reads from the nodal data �le, one time plane at a time,

generates homogeneous statistics, and writes the statistics as a function of time to various

ASCII �les. It also computes homogeneous energy and dissipation spectrums for each time

level. The user can easily modify ISO STATS to compute additional quantities of interest.

Gradients are computed at the centroid of elements only. Only eight node hexahedra gradient

calculations have been implemented. It is assumed that since the data is homogeneous, it

is acceptable to compute the gradients at the centroid instead of the nodes. This e�ectively

shifts the statistics calculation by one half the element dimension in each coordinate direction

compared to other non-gradient based nodal statistics. The ASCII data �les have a common
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form where the columns are; time data1 data2 etc, and the rows represent the evolution in

time.

3.6 Visualization utilities for problems with 3-D Periodic Boundary Conditions

In order to impose periodic boundary conditions on a problem being solved with MPSalsa,

a special type of EXODUS �le must be created with a mesh generator such as CUBIT [20].

The special aspect is that a set of extra element blocks must be created to e�ectively link

nodes on one side of the domain to the appropriate nodes on the other side of the periodic

direction. For one periodic direction, only one additional element block is created. For two

periodic directions, three additional element blocks are created. And for periodic boundary

conditions in all three dimensions, seven additional element blocks are needed (for a total

of eight in the mesh). These extra element blocks are designed so that no new nodes are

created, they simply provide the required connectivity between nodes on opposite sides of

the domain.

Because the elements contained within the extra element blocks spatially overlap the

primary elements in the mesh, visualization software cannot properly display the results.

The solution to this problem is to post process the output �le, creating a new �le that

contains the redundant node data consistent with the periodic conditions, and revising the

element-node connectivity.

A simple utility called EXO PERIODIC was been written that performs this postprocess-

ing on unstructured grid EXODUS II based output �les. It is available from the �rst author

of this report, and works for both uniform as well as irregular meshes.

By comparing Figures 1 and 2, one can see the additional nodes and revised elements

blocks that are created when using the EXO PERIODIC utility on a 10x10x10 randomized

mesh of a cubic region with 3-D periodic boundary conditions.
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Figure 1: Element block 1 of a cubic region specially meshed to handle periodic boundary conditions.

Figure 2: The revised mesh, element blocks and redundant nodes created by the EXO PERIODIC utility of

a cubic region specially meshed to handle periodic boundary conditions.
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3.7 Calculations of Turbulence Decay in a Box

A standard test problem for LES is the simulation of decaying isotropic turbulence. The

classic experiment by Comte-Bellot and Corrsin [12] provides data of adequate detail to

reproduce the experiment numerically. In the actual experiment a wire mesh is placed in a

wind tunnel. In the wake of the mesh turbulence is generated that is convected down stream

becoming isotropic in the center of the tunnel. The mean velocity in the tunnel was 10

m/s and the mesh spacing was 5.08 cm. Measurements were taken at three locations down

stream of the mesh. The mean velocity was large compared to the 
uctuating velocity and

so Taylor's hypothesis was used to relate the three down stream locations to three evolution

times relative to a datum located at the mesh.

Numerical experiments are constructed by initializing a three-dimensional Cartesian mesh,

shaped like a cube with equal mesh spacing in all three directions, with a random velocity

�eld at time t = 0, having periodic boundary conditions in all three directions. The 
ow then

evolves in time. The initial �eld is matched as closely as possible with the �rst measurement

point in the tunnel and the goal of the simulation is to match the 
ow statistics for the

subsequent two time levels. The initial conditions can not match the experiment exactly,

however, they must contain similar turbulence properties. For example, we seek to match

the initial energy spectrum, rms velocities (u0), longitudinal and transverse integral length

scales (L11; L12), and turbulence Reynolds number (Ret =
u0Lt

�
). In addition the discrete

velocity �eld must be divergence free. The initial velocity �eld is generated by specifying

an isotropic energy spectrum. In spectral space, random phase angles are assigned to the

velocity components and then the �eld is transformed back to physical space.

Because the LES is only computing the resolved energy, the subgrid energy is subtracted

from the total energy by truncating the experimental spectrum, and the initial �eld is gen-

erated from this truncated energy spectrum.

Since the initial �eld contains random phases, certain statistics are not properly repro-

duced, such as derivative skewness, and two-point correlations such as the transverse integral

scale L12. In order to remedy this problem, initial conditions are generated by a two-step

process. In the �rst step, the simulation is run with the initial �eld containing random

phases. At some arbitrary time, the simulation is halted. In the second step the energy

spectrum is computed. This energy spectrum is compared to the target spectrum and the

di�erence in energy is added to the velocity �eld to create a new initial �eld with the desired

energy spectrum. The phase information is not altered in this process so the new initial

�eld contains phase information that is closer to what real turbulence contains. The full

simulation is then run.

In Figure 3, the energy decay of 323 and 643 simulations using the dynamic Ksgs and

dynamic Smagorinsky model and no model, are compared to the experimental data. The

lumped mass �lter was used. While signi�cant di�erences are observed, the dynamic model
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clearly predicts the trends and nearly the correct rates of decay. Without a subgrid model,

the predicted energy decay is clearly wrong.

In Figure 4, the resolved energy spectrums for 643 simulations using both dynamic models

with the LMP �lter are compared to experiments. In this case the LES contains a truncated

spectrum due to the �nite resolution. The �rst time level serves to provide initial conditions.

The second and third time levels are then predicted and as can be seen, correct trends in

shape of the spectrums are produced. The energy at the highest resolved wave numbers are

dissipated at about the correct rate and the mid-wave numbers are somewhat over predicted.

For the lowest wave numbers it should be noted that there are probably not enough samples

to produce an accurate representation because there are only a few large eddies in the box.

These results are consistent with other authors using similar numerical algorithms ([31]).

Figures 5 and 6 compare solutions using the LMP and RKPM discrete �lters with both

dynamic models. The two �lters produce similar results on this uniformly gridded problem,

as expected. Also shown in Figure 6 are the resolved energy spectrums for the no-model

case. These results demonstrate the unphysical build-up of energy in the high wave numbers

that is produced when a subgrid model is not activated.

As an additional test of the overall model, a highly resolved 1283 simulation was per-

formed. Under these conditions, the subgrid model accounts for only a very small fraction

of the energy, and the overall solution should be very accurate. In Figure 7, the decay of the

resolved TKE is plotted verses time and compared to the experimental data. The agreement

is within experimental error, con�rming our expectations.
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Figure 3: Decay of resolved TKE for 323 and 643 simulations using the dynamic Ksgs, dynamic Smagorinsky,

and no model
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3.8 Simulations of a Methanol Pool Fire

LES calculations were performed with MPSalsa on an unstructured, 2-D mesh of a methanol

pool �re, and compared to results from a 3-D LES with a structured code and a simpler

RANS code calculation [16]. Two simple conserved scalar 
amelet-based combustion models

with assumed PDF are developed and implemented. The �rst model assumes statistical

independence between mixture fraction and its variance and results in poor predictions of

time-averaged temperature and velocity. The second combustion model makes use of the

PDF transport equation or mixture reaction and does not employ the statistical indepen-

dence assumption. Results using this model show good agreement with experimental data

for both the 2-D and 3-D LES, indicating that the use of statistical independence between

mixture fraction and its dissipation is not valid for pool �re simulations. Lastly, �nger-like


ow structures near the base of the plume, generated from stream-wise vorticity, are shown

to be important mixing mechanisms for accurate prediction of time-averaged temperature

and velocity.

We note that this work was motivated by e�orts at Sandia to develop computational tools

capable of modeling the heat transfer from large-scale pool �res. Large scale pool �res might

occur after an aviation fuel spill or an aircraft accident, and have direct safety implications

for nuclear weapons systems that could be immersed in the extreme thermal environment of

such a �re.

3.8.1 Test Problem Description

The data set used for preliminary model validation is the 24.6 kW methanol pool �re of

Weckman and Strong [76]. The pool has a diameter of 31 cm and is fed by a liquid pumping

system which provides a volumetric 
ow rate at the pool surface of 1.35 cm3/s . This data

set includes point laser doppler velocimetry and thermocouple measurements of both time-

averaged and 
uctuating velocity and temperature. The methanol pool is located at least 1

m from the 
oor and is enclosed by a wire mesh to minimize disturbances. The local mixing

of the 
ow �eld is controlled by the large scale stretched toroidal vorticies that are emitted

at a puÆng frequency fo 2.8 Hz. In addition, smaller scale �nger-like structures that lie near

the base of the plume are clearly visible.

3.8.2 Numerical Formulations

In addition to the MPSalsa calculations and model, two other numerical models were inves-

tigated in order to provide a comparison. The following three subsections summarize each

of the three numerical models investigated here. Finally, the boundary conditions imposed

on the simulations are brie
y described.
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Figure 8: 2-D unstructured LES grid (5774 quadrilateral elements).

Figure 9: RANS grid (24x24 cells).
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Figure 10: 3-D structured LES grid (80x65x65) with 16 processor domain decomposition.

3.8.2.1 2-D (Axisymmetric) MPSalsa LES Model The axisymmetric MPSalsa LES model

uses a Galerkin Least-Squares �nite element method to solve the �ltered Navier-Stokes equa-

tions on an unstructured grid shown in Figure 8. MPSalsa [69] uses equal order pressure

and velocity interpolation and provides SUPG-type stabilization. A second order Adams-

Bashforth/trapezoidal rule time integration is used. The axisymmetric equations are solved

in a fully coupled manner using an inexact Newtons method. The grid consists of 5774

quadrilateral elements and uses linear basis functions. The simulations were run in parallel

using either 8 or 32 processors.

3.8.2.2 2-D (Axisymmetric)RANSModel The RANSmodel solves the Navier-Stokes equa-

tions in �nite volume form using the standard high-Reynolds number k-� model to provide

turbulence closure. The convective terms are discretized with the second order LDFSS

upwind 
ux-di�erence splitting scheme of Edwards [18], while the di�usion terms are dis-

cretized with central di�erences. First-order time accuracy is used to advance the solutions

to a steady-state. This model uses a fully compressible formulation with local time-derivative

preconditioning [19] to alleviate the sti�ness due to disparity between acoustic and convec-

tive time scales. Characteristic-based boundary conditions are used at the in
ow and out
ow

boundaries. Solutions are obtained on three mesh levels (24x24,48x48,and 96x96 cells) in

order to assess grid convergence. In order to achieve a steady-state solution, the spatial

accuracy of the RANS simulations was reduced from second order to �rst order. Richardson
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Extrapolation was used for the �ne and medium grid levels in order to provide nominally sec-

ond order accurate temperature and stream-wise velocity pro�les. Unsteady RANS solutions

were not attempted in this paper. The coarse grid is shown in Fig. 3.

3.8.2.3 3-D LES Model The 3-D LES model solves the �ltered Navier-Stokes equations on

a structured �nite volume grid. A �fth-order upwind biased stencil is used for momentum

[43], while a �fth order Essentially Non-Oscillatory (ENO) scheme [70] is used for the energy

and species equations. The equations are integrated in time with a fourth order Runge-

Kutta scheme. Pressure gradient scaling [65] is used to provide temporal stability for these

low mach number 
ows. Sub-Grid Scale (SGS) modeling of momentum is achieved with the

dynamic Smagorinsky model [24] while the SGS di�usion of mass and energy uses a dynamic

gradient di�usion model [13]. The size is 80x65x65 grid cells or approximately 340,000 grid

nodes. The simulations were run on 16 processors using MPI and domain decomposition.

The grid and domain decomposition is shown in Fig. 5

3.8.2.4 Boundary Conditions The liquid fuel 
ow rate in the experiment was measured to

be 1.35x10�6 m/s (1.35 cm3/s), which corresponds to an e�ective average gas-phase velocity

of 0.0164 m/s (1.64 cm/s ). This time-averaged value was applied over the entire pool surface,

thus local variations in the fuel vaporization rate were neglected. The axial velocity in the

air stream (x = 0) was chosen as 0.001 m/s (0.1 cm/s ) to provide a small co-
ow stream for

numerical stability. The time-averaged temperature speci�ed from the experimental data in

the fuel and air streams is 723.15 K and 300 K, respectively, and atmospheric pressure was

imposed on all boundaries.

3.8.3 Combustion Models

The combustion models used in the current work are based on simple strained laminar


amelet models (SLFM) using assumed probability distribution functions (PDF). The chem-

istry is based on using an in�nitely fast single-step methanol reaction of the form:

�FCH3OH + �O2(3:76N2 +O2)! �CO2CO2 + �H2O
H2O + �O23:76N2 (3.12)

The motivation for using in�nitely fast chemistry is to obtain simple analytical expressions

(i.e. computationally eÆcient) for combustion that will predict the overall heat release and

products of major gas species. These approximations are considered reasonable for pool �re

simulations where strong extinction and reignition events are rare. Under these assumptions

the species may be written as functions of the mixture fraction only, i.e. Ys = Ys(z). This

expression can then be substituted in for the transport equation for Ys leading to the following

expression for reaction rate:
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_!s = �1

2
��
d
2
Ys

dz2
(3.13)

where � is de�ned as the scalar dissipation rate. For a turbulent 
ow �eld the subgrid scale

combustion environment is envisioned as an ensemble of smaller laminar 
ames or 
amelets.

The average chemical production rate may then be found by integrating Eq. (3.13) over the

joint PDF of mixture fraction and scalar dissipation rate, PZ�.

_!s = �1

2

Z
�max

0

Z 1

0
PZ��(�)�

d
2
Ys(�)

d�2
d�d� (3.14)

The interpretation of PZ� for RANS calculations is di�erent than it is for LES. For RANS,

PZ� represents the probability of �nding a value of Z and � at a particular point in space

over all time. For LES, the joint PDF represents the probability of �nding Z and � in a

subgrid volume weighted by a �ltering function at a particular point in space and time.

Two di�erent assumed PDF approaches to evaluating Eq. (3.14) were explored in this

study. In the �rst approach, (denoted as SLFM1) statistical independence is assumed be-

tween the mixture fraction and the scalar dissipation rate. In this case, the time averaged

(for RANS) or �ltered (for LES) chemical production rate becomes:

_!s = �1

2
��

Z 1

0
PZ(�)�(�)

d
2
Ys(�)

d�2
d� (3.15)

Experience showed that the predictions using the SLFM1 model tended to underpredict

the extent of heat release (and subsequently the temperatures and stream-wise velocities are

too low), and it was believed that this was a consequence of the statistical independence

assumption (as will be discussed more below). To address this shortcoming, a second model

(denoted as SLFM2) was developed and applied in which statistical independence is not

assumed. The model is derived by starting with the PDF transport equation for mixture

fraction and assuming constant density 
ows with equal and constant di�usivities. Details

of the derivation are given in [16], and yield the following analytical expression for the mean

reaction rate:

_!s = �1

2
Cs��(zst)

DF (Zst)

Dt
(3.16)

where DF (Zst)

Dt
is a Lagrangian derivative that requires explicit calculation locally in space for

the RANS and both time and space for the LES.

In addition, the �ltered mass fraction is required for computation and found by simply

integrating the state relationship over the PDF of mixture fraction, i.e.:

~Ys =

Z 1

0
PZ(�)Ys(�)d�: (3.17)
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In this study, the assumed shape of the PDF was chosen to be a beta function, which

leads to

_!s = � ����

2

�(�1 + �2)

�(�1)�(�2)
(b2 � b1)z

�1�1
st (1� zst)

�2�1 (3.18)

for the �ltered chemical production rate in case SLFM1, and

_!s =
1

2
(b2 � b1)��(zst)

D

Dt

Z
Zst

0
I�(�; �1; �2)d� (3.19)

for the �ltered chemical production rate in case SLFM2.

The assumed beta PDF requires the speci�cation of the mean mixture fraction and the

subgrid variance. For the LES approach, a scale similarity model is used [14]:

g
z00

2 = �
2
z
= (f~z~z � ~~z~~z) (3.20)

For the RANS calculations, a transport equation is solved for the mixture fraction variance

@�
2
z

@t
=

@

@xj
(��~uj�

2
z
) = P �D � �� ��f (3.21)

where P is a production term and D represents di�usion due to turbulent 
uctuations.

3.8.4 Results and Discussion

The mean reaction rate models based on Eqs. (3.18) and (3.19) are run for both the axisym-

metric and 3D LES while just the former is used in the RANS calculations. Predictions of

time-averaged temperature and stream-wise velocity are compared to experimental data at

heights of 0.02, 0.14 and 0.30 m above the pool surface to assess code (i.e. 2D versus 3D and

RANS versus. LES) and combustion model(i.e. SLFM1 versus SLFM2) performance. For

the LES cases, time-averaged quantities are obtained by �rst allowing for initial time depen-

dent transients to wash out of the computational domain and then statistics are collected

over several (5-10) pu� cycles for which the 
ow is considered statistically stationary.

3.8.4.1 Time-averaged Temperature using SLFM1 Figures 8 through 10 present compar-

isons of time-averaged temperature for the three speci�ed heights using SLFM1. At 0.02 m

above the surface (Fig.8) the time-averaged temperature is under-predicted in all cases. At

0.14 m both LES approaches essentially give a mixing solution with very little heat release.

The RANS approach shows good agreement with the data at the x=0.14 m location, but

under-predicts the mixing and hence the combustion at the centerline.

Fig.10 shows time-averaged temperature at 0.30 m above the pool surface. The RANS

approach greatly over-predicts the temperature while the LES cases greatly underpredict by

almost a half.
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3.8.4.2 Time-averaged Velocity using SLFM1 Time-averaged pro�les of axial velocity are

extracted from the simulations and compared with experimental data at all three heights

and presented in Figs. 11 through 13. At 0.02 m, the axial velocities are very near to the

in
ow values. At 0.14 m above the pool surface, the RANS model shows better agreement

with the data, while LES approaches under-predict the stream-wise velocity, consistent with

the temperature pro�le at the same location. The velocity trends in Fig.13 (0.30 m ) are

consistent with the temperature pro�les from Fig. 10. The RANS model over-predicts the

axial velocity, while the 2D and 3D LES cases greatly underpredict by as great as a factor

of 10.

In general,the behavior of the velocity �eld is closely linked to that of the temperature �eld.

Temperature pro- �les from the LES model using the standard form of the 
amelet model

fall signi�cantly below the experimental values, which then leads to an under-prediction of

the stream-wise velocity. The heat release from the RANS model is larger than that seen in

the experiment, leading to an over-prediction of the axial 
ow velocity. These discrepancies

indicate that the assumptions used to develop SLFM1 are not well founded for this class of


ows and an alternative model needs to be developed.

One of the main weaknesses in SLFM1 is the assumption of statistical independence

between Z and X. This assumption is generally valid for highly turbulent 
ows but breaks

down in transitionally turbulent 
ows such as the very near �eld of a turbulent jet [23] and

so is also questionable for the transitionally turbulent pool �re 
ows in this study. In order

to explore this assumption, a second combustion model is developed based on using the PDF

transport equation of mixture fraction and makes no assumption regarding the statistical

independence of Z and X outlined previously in the Combustion Models section. Results

using this new model are presented next for the 2D and 3D LES.

3.8.4.3 Time-averaged Temperature using SLFM2 Figures 14 through 16 present results of

time-averaged temperature pro�les at all three downstream locations from the 2D and 3D

LES. The results show signi�cant improvement using the new combustion model (SLFM2).

The axisymmetric LES tends to underpredict the temperature near the centerline at all

downstream locations and overpredict for r > 0.04 m at the x = 0.3 m location. The 3D

LES overpredicts near the toe of the pool �re 
ame (i.e. r = 0.15 m) at x = 0.0 m but agrees

reasonably well with the experiment at the other further downstream locations.

The most notable di�erence between the 2D-axisymmetric LES and the 3D LES is the

strong bimodal shape of the 2D LES at the 0.0 and 0.30 m downstream locations that

do not appear in either the 3D LES nor the experimental data. The reason for this can be

attributed to the axisymmetric assumption that doesnt allow for any stream-wise vorticity to

be generated. This is evident by comparing Figs. 17 and 18 showing representative snapshots

of temperature contours from 2D and 3D LES 
ow �elds, respectively. In the axisymmetric

LES, two distinct 
ow regions are observed near the base of the plume. The �rst region,
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Source Frequency (Hz)

Experiment 2.8

Correlation [10] 2.7

2D LES, SLFM1 3.1

2D LES, SLFM2 2.9

3D LES, SLFM1 1.8

3D LES, SLFM2 2.5

Table 1. Computed and Experimental PuÆng Frequencies.

near the plume centerline, consists of relatively high velocity that is being drawn upwards

due to a previous puÆng event. The second region is located away from the centerline

and consists of slower moving 
uid and a large toroidal vortical structure that was formed

due to the presence of baroclinic torque. These two predominant 
ow features give rise to

the bimodal shape observed in the time-averaged temperature pro�les. In contrast, these

structures are not as distinct in 3D LES of Fig. 18 due to the generation of stream-wise

vorticity that rapidly mixes the 
ow. The generation of stream-wise vorticity gives rise to

�nger-like instabilities often observed in pool �res and shown in the experimental images of

Fig. 2. These structures are also observed in the 3D LES as illustrated in Fig. 19 showing

an isocontour plot of vorticity magnitude.

3.8.4.4 Time-averaged Velocity using SLFM2 Figures 20 through 22 present time-averaged

stream-wise velocity comparisons using SLFM2. Good agreement is shown with comparison

to experiment for both the 2D and 3D LES. Consistent with the temperature pro�les, the

2D LES exhibits a strong bi-modal behavior at the 0.14 m and 0.30 m downstream locations

due to the lack of secondary mixing previously noted.

3.8.4.5 PuÆng Frequency Lastly, the puÆng frequencies were determined from the un-

steady LES calculations using both combustion models and presented in Table 1. Frequencies

reported from the experiment and from simple Richard number based correlations of Ref [10]

are also tabulated. In all of the LES cases, better agreement to the experimental data and

correlation were obtained using SLFM2, consistent with the improved time-averaged velocity

and temperature predictions.
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3.8.5 Summary and Conclusions

For pool �res, the velocity and temperature �elds are tightly coupled. If the net amount of

heat release is under-predicted, then the buoyant forces which drive the 
ow will be reduced

leading to a subsequent reduction in the stream-wise velocity. This strong coupling between

the temperature and velocity �elds requires accurate predictions of the subgrid combustion

processes. In this study, two di�erent SLFM-based combustion models with assumed PDF

were explored using 2D RANS, 2D LES and 3D LES codes. The use of SLFM1 resulted in

poor predictions of time-averaged temperature and stream-wise velocity for all cases. This

behavior is attributed to the assumption of statistical independence between mixture fraction

and its dissipation rate. This realization resulted in the development of a second combustion

model (SLFM2) that does not make use of the statistical independence assumption. The

use of this model resulted in substantiality better predictions of time-averaged temperature

and velocity as well as puÆng frequency for both the 2D and 3D LES. Lastly, a bimodal

distribution is observed in the 2D LES and is attributed to the absence of stream-wise

vorticity generation in the axisymmetric formulation that enhances secondary mixing.

Figure 11: Time-averaged temperature pro�les 0.02 m above the pool.
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Figure 12: Time-averaged temperature pro�les 0.14 m above the pool.

Figure 13: Time-averaged temperature pro�les 0.30 m above the pool.
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Figure 14: Time-averaged axial velocity pro�les 0.02 m above the pool.

Figure 15: Time-averaged axial velocity pro�les 0.14 m above the pool.
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Figure 16: Time-averaged axial velocity pro�les 0.30 m above the pool.

Figure 17: Time-averaged temperature pro�les 0.02 m above the pool for SLFM2.

70



Figure 18: Time-averaged temperature pro�les 0.14 m above the pool for SLFM2.

Figure 19: Time-averaged temperature pro�les 0.30 m above the pool for SLFM2.
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Figure 20: Instantaneous snapshot showing temperature contours from 2D axisymmetric LES.

Figure 21: Instantaneous snapshot showing temperature contours from 3D LES at a slice through the

centerline.
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Figure 22: Instantaneous snapshot showing vorticity magnitude at 44 percent of maximum from 3D LES.

Figure 23: Time-averaged axial velocity pro�les 0.02 m above the pool for SLFM2.
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Figure 24: Time-averaged axial velocity pro�les 0.14 m above the pool for SLFM2.

Figure 25: Time-averaged axial velocity pro�les 0.30 m above the pool for SLFM2.
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4 An LES near-wall subgrid model based on ODT

In section 2.7, a brief description of the near-wall resolution problem was given, and it was

noted that although various models have been proposed, signi�cant limitations remain. In

this section we describe the development and testing of a novel new approach to the near-

wall LES closure problem that is based on coupling the ODT model of Kerstein to LES.

In the near-wall region, �nely resolved ODT lines are embedded within a coarse LES mesh

and the ODT evolution equations capture �ne-scale temporal and spatial variations (in one

direction) of the three-component velocity �eld. Near-wall turbulent transport is modeled

through the combined e�ect of a sequence of 
uid-element rearrangements (called eddy

events), without the introduction of an eddy viscosity. LES/ODT coupling is bi-directional

and occurs both through the direct calculation of the subgrid turbulent stress by temporally

and spatially �ltering the ODT-resolved momentum 
uxes (up-scale coupling), and through

the LES-resolved mean pressure and velocities impacting the ODT behavior (down-scale

coupling). The overall goal of this research is to develop and demonstrate a method that

avoids the overwhelming computational expense of a �nely resolved 3D mesh in the near-wall

region, and yet provides well-resolved near-wall dynamic behavior for high-Reynolds number

wall-bounded 
ows.

4.1 Overview of ODT

ODT can be viewed as a method for simulating, with spatial and temporal resolution com-

parable to direct numerical simulation (DNS), the evolution of the velocity vector and 
uid

properties along a one-dimensional (1D) line of sight through a 3D turbulent 
ow. ODT is

an outgrowth of the linear-eddy model [34], in which 
uid motions are prescribed without

explicit introduction of a velocity �eld. The �rst ODT formulation [35] involved simulation

of a single velocity component evolving on a line. A more recent formulation [36] introduced

the evolution of the three-component velocity vector on the 1D domain. Generalization to

treat variable-density e�ects dynamically is in progress. For the work described in this pa-

per the formulation described in [36] is adopted as a starting point. Only an abbreviated

description of the model is included here, with constant density assumed for simplicity, and

the emphasis is on those aspects most relevant to the LES subgrid model described later. In

addition, the numerical implementation of ODT for stand-alone calculations (i.e. no multi-

dimensional grid, a single ODT line spanning the channel) of turbulent channel 
ow is brie
y

described, together with representative results, in order to give context to its more restricted

use as a subgrid model.
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4.1.1 Modeling Approach

The version of ODT utilized here describes the evolution of a three-component vector velocity

�eld vi(y; t) de�ned on a one-dimensional domain (parameterized by the spatial coordinate

y, corresponding to the direction i = 2). Additional scalar �elds �(y; t) may also be de�ned

in the model, but are not implemented here.

The �elds de�ned on the 1D domain evolve by two mechanisms, molecular evolution

and a stochastic process (probabilistically driven by a simple physical model) representing

turbulent stirring. The stochastic process consists of a sequence of events, each of which

involves an instantaneous transformation of the velocity and scalar �elds. During the time

interval between each event and its successor, molecular evolution occurs, governed by the

equations �
@t � �@

2
y

�
vi(y; t) = 0 (4.1)�

@t � �@
2
y

�
�(y; t) = 0; (4.2)

where � is the kinematic viscosity and � is the scalar di�usivity.

The events representing turbulent stirring may be interpreted as the model analog of

individual turbulent eddies. In what follows, these events are termed `eddy events' or simply

eddies. This terminology re
ects the fact that each event is characterized by three properties,

a length scale, a time scale, and a measure of kinetic energy, and that a key physical input

to the model is a postulated relationship among these quantities that is analogous to the

usual dimensional relationship applied to individual turbulent eddies.

The turbulent stirring submodel is speci�ed by de�ning the mathematical operations

performed during an eddy event and by formulating the rules that govern the selection of

events. Conceptually, the eddy de�nition is the model representation of 
ow kinematics

(i.e., 
uid advection and 
ow-�eld response to forcings), while rules governing the stochastic

selection of events re
ect the dynamics that drive the eddy motions. Because turbulent

stirring is implemented as an event sequence rather than a continuous process, the velocity

�eld does not directly prescribe the 
uid motions. Motions and velocities are nevertheless

closely linked through the dynamics embodied in the event selection rules.

In the current formulation, an eddy event consists of two mathematical operations. One is

a measure-preserving map representing the 
uid motions associated with a notional turbulent

eddy. The other is a modi�cation of the velocity pro�les in order to implement energy

transfers prescribed by the dynamical rules. These operations are represented symbolically

as

vi(y) ! vi(f(y)) + ciK(y) (4.3)

�(y) ! �(f(y)):

According to this prescription, 
uid at location f(y) is moved to location y by the mapping

operation, thus de�ning the map in terms of its inverse f(y), which is convenient for present
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purposes. This mapping is applied to all 
uid properties. The additive term ciK(y), a�ecting

only the velocity components, is used to capture pressure-induced energy redistribution

among velocity components.

The functional form chosen for f(y), called the `triplet map,' is the simplest of a class

of mappings that satisfy the physical requirements of measure preservation (the nonlocal

analog of vanishing velocity divergence), continuity (no introduction of discontinuities by the

mapping operation), and scale locality (at most order-unity changes in property gradients).

The �rst two requirements are fundamental properties. The requirement of scale locality is

based on the well-established empirical principle that length-scale reduction in a turbulent

cascade occurs by a sequence of small steps (corresponding to notional turbulent eddies),

causing down-scale energy transfer to be e�ectively local in wavenumber.

Mathematically, we can de�ne the triplet map as

f(y) � y0 +

8>>>>>>>>>>>><>>>>>>>>>>>>:

3(y � y0) if y0 � y � y0 +
1
3
l,

2l � 3(y � y0) if y0 +
1
3
l � y � y0 +

2
3
l,

3(y � y0)� 2l if y0 +
2
3
l � y � y0 + l,

y � y0 otherwise.

(4.4)

This mapping takes a line segment [y0; y0 + l], shrinks it to a third of its original length,

and then places three copies on the original domain. The middle copy is reversed, which

maintains the continuity of advected �elds and introduces the rotational folding e�ect of

turbulent eddy motion. Property �elds outside the size-l segment are una�ected.

In Eq. (4.3), K is a kernel function that is de�ned as K(y) = y � f(y), i.e., its value

is equal to the distance the local 
uid element is displaced. It is non-zero only within the

eddy interval, and it integrates to zero so that energy redistribution does not change the

total (y-integrated) momentum of individual velocity components (here assuming constant

density).

The amplitudes ci in Eq. (4.3) are determined for each eddy individually according to a

model (designed to capture pressure-scrambling e�ects) that changes the kinetic energy of

individual velocity components, de�ned by

Ei � 1

2
�

Z
v
2
i
(y) dy; (4.5)

while keeping the total kinetic energy E � P
i Ei constant. (The density �, assumed constant,

is de�ned here as mass per unit length.) Consider the change in the kinetic energy of

component i due to the implementation of an eddy event. According to Eq. (4.3), the

energy change is

�Ei =
1

2
�

Z h
(vi(f(y)) + ciK(y))2 � vi(y)

2
i
dy = �l

2
ci

�
vi;K +

2

27
lci

�
; (4.6)

77



where we have used the identity
R
K

2(y) dy = 4
27
l
3 and the de�nition

vi;K � 1

l2

Z
vi(f(y))K(y) dy =

4

9l2

Z
y0+l

y0

vi(y)[l� 2(y � y0)] dy: (4.7)

The rightmost expression in Eq. (4.7) follows from the de�nitions of f(y) and K(y). The

requirement
P

i�Ei = 0 implies only one constraint on the three amplitudes ci.

Further modeling to determine the three amplitudes is based on the following observation.

ci for given i can be chosen so as to add an arbitrarily large amount of kinetic energy to

component i, but the maximum amount that can be removed is a �nite value,

Qi � 27

8
�lv

2
i;K
: (4.8)

The amounts Qi available for removal by the kernel mechanism are the basis of an energy-

redistribution procedure motivated by the tendency of turbulent eddies to drive the 
ow

toward isotropy. Namely, the energy changes

�Ei =
�

2
(Qj +Qk � 2Qi) (4.9)

are applied, where � is a model parameter and (i; j; k) is any permutation of the component

indices (1; 2; 3). The value � = 2
3
corresponds to equipartition of the available energy among

velocity components and is used to obtain the results presented here. Ref. [36] considers the

e�ect of setting � = 1, which maximizes the intercomponent energy transfer. Although this

choice has an impact on some velocity statistics, it is found that properties of interest here

are not very sensitive to the choice of �.

With Qi given by Eq. (4.8), the exchange amplitudes ci are evaluated by solving Eq. (4.6)

and using Eqs. (4.8) and (4.9) to obtain

ci =
27

4l

�
�vi;K + sgn(vi;K)

r
(1� �)v2

i;K
+
�

2
(v2

j;K
v
2
j;K

)

�
; (4.10)

where the sign ambiguity in solution to the quadratic equation for ci is resolved by requiring

that ci ! 0 as � ! 0. Where necessary, initial conditions are seeded with small random

perturbations to resolve the sign ambiguity in a manner that does not bias the 
ow evolution.

4.1.2 Eddy Selection

The �nal ingredient required in the model is the determination of the time sequence of eddy

events, individually parameterized by position y0 and size l, that are implemented. In ODT,

eddy events are implemented instantaneously, but should occur with frequencies comparable

to the turnover frequencies of corresponding turbulent eddies. Events are therefore deter-

mined by sampling from an event rate distribution that re
ects the physics governing eddy

turnovers. A key feature of this distribution is that it is based on the instantaneous state of

the 
ow, and thus evolves in time as the 
ow evolves.

78



At each instant in time, the event rate distribution is de�ned by �rst associating a time

scale � (y0; l) with every possible eddy event. (Note that � (y0; l) is analogous to the eddy

turnover time as usually de�ned, but is based on the instantaneous velocity pro�les vi(y; t).)

To this end, the quantity l=� is interpreted as an eddy velocity and �l
3
=�

2 is interpreted

as a measure of the energy of eddy motion. To determine � , this energy is equated to

an appropriate measure of the eddy energy based on the current 
ow state. For reasons

explained elsewhere [36], the energy measure that is used is the available energy of the i = 2

velocity component upon completion of eddy implementation, minus an energy penalty that

re
ects viscous dissipation e�ects. The energy penalty introduces a threshold Reynolds

number that must be exceeded for eddy turnover to be allowable.

Based on these considerations, we use the relationship 
l

�

!2
� (1 � �)v22;K +

�

2
(v21;K + v

2
3;K)� Z

�
2

l2
(4.11)

to determine � , where the coeÆcient Z in the viscous penalty is an order-unity parameter

of the model.

Given Eq. (4.11), the time scales � for all possible eddies can be translated into an event

rate distribution �, de�ned as

�(y0; l; t) � C

l2� (y0; l; t)

=
C�

l4

vuuut(1� �)

 
v2;Kl

�

!2
+
�

2

24 v1;Kl
�

!2
+

 
v3;Kl

�

!235� Z; (4.12)

where C is an adjustable parameter that controls the overall event frequency. If the right-

hand side of Eq. (4.11) is negative, the eddy is deemed to be suppressed by viscous damping

and � is taken to be zero for that case. In the square root term of Eq. (4.12), the quantities

preceding Z involve groups that have the form of a Reynolds number. Z can be viewed in

this context as a parameter controlling the threshold Reynolds number for eddy turnover.

The foregoing construction of the event rate distribution involves three free parameters:

C, �, and Z. The overall rate constant C determines the relative strength of the turbulent

stirring in the model. The transfer coeÆcient � determines the degree of kinetic energy ex-

change among velocity components. The viscous cuto� parameter Z determines the smallest

eddy size for given local strain conditions. What remains in order to completely specify an

ODT 
ow simulation are the physical properties of the 
uid (density, viscosity, etc.) and the

proper de�nition of initial and boundary conditions. Of these, only the boundary conditions

for enclosed turbulent 
ows require further discussion here.

The boundary condition for molecular evolution, Eq. (4.1), is simply the standard no-slip

condition, i.e., the velocity components are set equal to the wall values. In enclosed 
ows,

the turbulent stirring model also feels the e�ect of boundaries through the implicit limitation
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they place on where eddies can occur and their maximum length scale, Lmax. For example,

in an ODT simulation of turbulent channel 
ow, the largest mathematically realizable eddy

event is equal to the channel width. However, since an eddy event is simply a model for

turbulent mixing, it should not be surprising that the behavior of real 3D 
ow is better

represented by setting Lmax to a somewhat smaller value. Although not signi�cant to the

LES/ODT submodel introduced here (where the LES/ODT coupling limits the physical size

of the maximum eddy length), this interesting detail is illustrated in example calculations of

channel 
ow using stand-alone ODT in Section 4.1.4.

Finally, we brie
y note that an additional step is typically introduced in stand-alone

calculations in order to suppress unphysically large eddies that may otherwise occasionally

occur. Like other multiscale models, ODT has a low-wavenumber divergence that must be

suppressed by introducing a cuto� mechanism [35]. For the example stand-alone calculations

presented below, the \median method" described in [36] is used. However, this detail is also

unimportant to the LES/ODT coupling developed here because in this context the ODT

eddy event size is restricted, by construction, to only those length scales unresolved by the

LES.

4.1.3 Numerical Implementation

Neglecting data-gathering procedures, the numerical implementation of an ODT simulation

involves three subprocesses: molecular evolution, eddy selection, and eddy implementation.

Molecular evolution according to Eq. (1) can be computed numerically using any con-

ventional approach. In the calculations performed here the molecular evolution is computed

each time the eddy event rate distribution is sampled, leading to very small time steps.

Thus �rst order explicit time integration coupled with second order central di�erencing of

the di�usion term is employed.

As explained above, the sequence of eddy events implemented during a simulated realiza-

tion is determined by sampling from the rate distribution �. However, each event, as well as

the viscous evolution, Eq. (4.1), between events, changes the velocity pro�les vi and therefore

modi�es the rate distribution. From a computational viewpoint this is a problem because it

causes explicit construction of, and sampling from, the rate distribution to be una�ordable

owing to the need to repeatedly reconstruct this distribution.

To overcome this problem, an indirect but mathematically equivalent procedure is em-

ployed. This procedure is implemented once per eddy time step �teddy. A candidate eddy

is chosen by random sampling of y0 and l values from a joint probability density function

g(y0; l; t) (called the trial PDF) that can be arbitrary, subject to some weak constraints

(though the procedure is most eÆcient if it approximates the true distribution). The re-

mainder of the procedure is a determination of whether or not this candidate eddy should

be implemented.
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The implementation decision is based on the model (described in Section 2.2) that de-

termines the `turnover time' � for the chosen eddy based on the instantaneous state of the

simulated 
ow (for present purposes, the vi pro�les). � is used to determine a physically

based value of the probability density of the sampled values of y0 and l. By comparing

this probability density and the probability density given by the trial PDF g(y0; l; t) used

for sampling, an acceptance probability is assigned such that the event statistics resulting

from the combined process of sampling and subsequent acceptance or rejection of a can-

didate eddy closely approximate the event statistics speci�ed by the physical model. The

indirect procedure reproduces the statistics of the direct procedure to any desired accuracy

by choosing a small enough sampling time step �teddy.

As further explanation we note that �(y0; l; t) can be viewed as the product of an overall

rate, R =
R
�(y0; l; t) dy0dl, of eddy events and a probability density function, R�1�(y0; l; t),

from which eddy parameters y0 and l are sampled. On this basis, the probability of ac-

ceptance of a candidate eddy is the product of R�teddy (the ratio of the model-prescribed

event rate and the numerically implemented eddy-sampling rate) and �(y0; l; t)=[Rg(y0; l; t)]

(the ratio of the model-prescribed probability density of the sampled parameter values and

the probability density according to the trial PDF g(y0; l; t) that is sampled to select the

parameters of the candidate eddy). R�teddy � 1 is a necessary condition for the select-and-

decide procedure to approximate closely the eddy statistics that would be obtained by direct

random sampling of the rate distribution �(y0; l; t) [35].

Eddy implementation on a discretized domain requires the de�nition of the discrete triplet

map. For conservative implementation, the discrete triplet map is de�ned as a permutation

of the cells of the discrete domain. The eddy interval is taken to be an integer multiple of

three cells. The smallest consistently de�ned permutation involves six cells. Continuous and

discrete representations of the triplet map are illustrated in Fig. 26(a) and (b) respectively.

In Fig. 26(c), the discrete implementation of Eq. (4.3), including the kernel function, on a

three component velocity �eld is illustrated. For this example, the initial values of v and w

are uniform, but u has a linear pro�le. This highlights the transfer of kinetic energy among

velocity components using the kernel function.

4.1.4 Stand-alone ODT Simulations of Channel Flow

The application of ODT as a stand-alone model for turbulent channel 
ow is demonstrated

because it illustrates the method for determining the ODT model constants. This application

is also used as an initial benchmark for the coupled LES/ODT model.

Fully-developed turbulent 
ow in a planar channel of width 2h is simulated by applying the

boundary conditions vi = 0 to all velocity components, and introducing a �xed source term

�1
�

@P

dx
on the right-hand side of Eq. (4.1) for i = 1. This term introduces an imposed mean

pressure gradient in the streamwise (x) direction, but does not include pressure 
uctuations.
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(Pressure 
uctuations are not modeled explicitly, but their e�ects are represented in the

implementation of eddy events.)

ODT results for statistically steady 
ow are compared to corresponding DNS results of

Moser et al. [55], who report results for Re� = 180, 395, and 590. Here, Re� = u�h=�,

where u� =
q
�dv2=dyjy=0 is the friction velocity. Grid independent results were obtained

for uniformly discretized meshes with �y+ < 1 (y+ = yu�=�).

To perform the simulations, values of C, Z, � and Lmax must be speci�ed. The friction

law is sensitive mainly to C, which controls the turbulence intensity. By controlling the

frequency of small eddies (i.e. the viscous cuto�), Z mainly a�ects the transition of the

mean velocity pro�le from the near-wall viscous sublayer to the log-law region, thus de�ning

the nature of the bu�er layer. The e�ect of neglecting Z (by setting Z to a very small value)

is illustrated by curve (a) in Fig. 27. For this case, adjustment of C to obtain a good �t to

the friction law yields a value C = 6:72 and a mean velocity pro�le in which the bu�er layer

is essentially removed and the log layer extends down to within numerical resolution of the

wall.

Optimum values of C and Z were found by adjusting these parameters to obtain a good

match to the DNS friction coeÆcient and mean velocity pro�le at Re� = 590, while keeping

the values of � and Lmax constant and equal to 2=3 (corresponding to an equalization of

component energies) and 2h (the channel width), respectively. This yields curve (b) of

Fig. 27, for which C = 12:73 and Z = 98. Finally, curve (c) of Fig. 27 illustrates the e�ect

of adjusting the value of Lmax. For Lmax = 2h, the wake region of the 
ow (the 
ow in the

central portion of the channel) is not well represented. However, for Lmax = h, the wake

region is captured quite well. Based on these results the best-�t values for the ODT model

parameters are taken to be C = 12:73, Z = 98, and Lmax = h, and are held constant for

simulations at all other Reynolds numbers.

Fig. 28 shows computed friction coeÆcients over a range of Reynolds numbers and com-

pares ODT values with the DNS data of Moser et al. [55] and the turbulent correlation of

Dean [13]. The Reynolds number used in this plot is based on the bulk velocity and the

channel width (2h), and the friction coeÆcient is de�ned as Cf = 2(u�= �U )
2, where �U is

the bulk velocity. Good agreement is obtained with the DNS Cf value at Re� = 395 but a

slight overprediction of Cf at Re� = 180 is observed. ODT is formulated based on scalings

applicable to high-intensity turbulence, so it may provide a less accurate representation of

the weak turbulence at this Re� value. For the other 
ow properties considered here, neither

DNS nor ODT exhibit much sensitivity to Re� , so additional stand-alone results are shown

only for Re� = 590.

The diagonal components, and the nonvanishing o�-diagonal component, of the scaled

Reynolds-stress tensor are shown in Fig. 29. The physically valid ODT de�nitions of these

and other high-order statistics are explained in detail elsewhere [35, 36]. Of note is that

in general the diagonal components are somewhat underpredicted by ODT, and the pro�le
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of the streamwise component has a small dip (due to the discrete size of eddy events) at

the near-wall peak. Later it is shown that LES/ODT results for the diagonal components

are in much better agreement with DNS results, suggesting a more realistic forcing of the

near-wall region when the bulk 
ow is modeled with LES and the e�ects are coupled to

ODT. Figure 29 also illustrates that hv022 i and hv023 i are statistically identical. This is due to
the coordinate invariance of the pressure scrambling mechanism used in the current multi-

component formulation. More general formulations that break this symmetry (and involve

three distinct eddy types) have been tested, but are not applied here.

Despite the discrepancies seen in Fig. 29, the ODT predictions of the terms of the v1

variance budget, shown in Fig. 30 are in good overall agreement with the corresponding

DNS terms. This suggests that ODT is a fundamentally sound model of near-wall 
ow

energetics.
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Figure 26: Illustration of (a) an analytical triplet map of a scalar with initially uniform gradient, (b) a discrete

triplet map of a scalar with initially uniform gradient, and (c) a discrete eddy event on a three-component

ODT velocity �eld where the initial values of v and w are uniformly zero.
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ow at Re� = 590, in

wall coordinates. Note that (b) and (c) are vertically o�set from (a) for clarity in illustrating the e�ects of

changing the ODT model parameters.
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Figure 28: ODT computed friction coeÆcient Cf for channel 
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correlation of Dean [13]. Here, Re is based on the bulk velocity and the channel width (2h).
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Figure 29: Lateral pro�les of Reynolds stress components in channel 
ow, scaled by u2
�
: ||, hv02

1 i; | � � �|,

hv02
2 i; | �|, hv02

3 i; { { {, hv0

1v
0

2i. (The ODT hv02
3 i pro�le is identical to the ODT hv02

2 i pro�le.) ODT and

DNS [55] results are plotted right and left of centerline, respectively.
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4.2 Formulation of an ODT-Based Near-Wall Subgrid model

Having reviewed both the ODT stand-alone model and the LES model, we now describe a

method for coupling the highly resolved (in 1D space) ODT model, near all no-slip walls,

with traditional 3D LES turbulence modeling in the bulk 
ow.

4.2.1 Geometric Considerations

The ODT wall model a�ects the LES equations in two distinct near-wall regions, as illus-

trated in Fig. 31. For reference purposes, we call the layer of LES cells that are immediately

adjacent to the no-slip wall the ODT inner region. It is in this region that the ODT model

is primarily active. A second region, called the LES/ODT overlap region, extends outward

from the top of the inner region through a number of additional LES cell layers. The extent

of this region is determined by an ODT model parameter associated with the LES �lter

width. The 
ow in this domain is primarily controlled by standard LES equations, but is

also a�ected by an LES/ODT coupling described in Section 4.6.

From an LES perspective, we begin by conceptualizing all LES cells that lie adjacent to

solid walls (i.e., the inner ODT region) in the framework of the volume-balance LES model

developed by Schumann [67] and brie
y described in Section 3.1 (see Eq. (2.9)). Associated

with each of these inner-region control volumes, we de�ne an ODT line that begins at the

no-slip wall and extends upward to the top of the control volume. All three ODT velocity

components as well as any scalar quantities of interest, except pressure, are spatially resolved

in the wall-normal direction on the ODT lines. Pressure is only resolved on the LES-scale

mesh (i.e., one value per LES control volume) because 3D continuity constraints are imposed

by pressure only on the LES grid.

Volume-averaged instantaneous values for the inner region can be computed simply as the

numerical average of their corresponding ODT values on a given ODT line, as follows:

�� =
1

NODT

NODTX
m=1

�m; (4.13)

where � denotes a generic variable, and NODT is the number of ODT points on the discretized

ODT line. This is a useful de�nition which is used for relating ODT variables to LES

variables.

The ODT-resolved variable �m represents an instantaneous volume average over a control

volume of height �Y=NODT at a nominal distance y = ym =

�
m�

1

2

NODT

�
�Y above the wall,

where �Y is the height of the LES control volume. This is illustrated pictorially in Fig. 32,

where an array of ODT sub-volumes embedded in a near-wall LES control volume is depicted.

In e�ect, each point on the ODT line is conceptualized as an LES sub-control volume in

exactly the same sense as developed by Schumann, only in this case, the resolution in the

wall-normal direction is very �ne.
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4.2.2 Revised ODT Evolution Equations

ODT as a stand-alone model is a closed system that consists of a single ODT line. However,

when used as a near-wall LES subgrid model the near-wall region consists of a forest of

ODT lines, and the formulation must therefore be extended to allow for advective transport

between ODT domains that lie in adjacent LES control volumes. This is accomplished

by modifying the ODT evolution equations (see Eqs. (4.1) and (4.2)) to include advective

transport terms as follows:

�
@t � �@

2
x2

�
vi(y; t) + @xj (Vj(y; t)vi(y; t)) +

1

�

@ �P

@xi

�����
i6=2

= 0 (4.14)

�
@t � �@

2
x2

�
�(y; t) + @xj (Vj(y; t)�(y; t)) = 0: (4.15)

Here, a mean pressure gradient term (assumed constant) has been included except in the wall-

normal direction (i = 2), and a local advective velocity �eld Vj(y; t), has been introduced.

Taking V1(y; t) and V3(y; t) to be v1(y; t) and v3(y; t) respectively gives a formally valid

representation of lateral transport. However, de�nitions of V1 and V3 that involve temporal

�ltering of v1 and v3 are preferred because the spatial derivatives in the i = 1 and i = 3

directions in Eqs. (4.14) and (4.15) are implemented numerically as spatial di�erences over

LES-scale spatial increments �X and �Z, respectively, as illustrated by the LES/ODT

control-volume geometry sketched in Fig. 32. (Thus, all functions of y in Eqs. (4.14) and

(4.15) are also functions of x and z, though these dependencies are not shown explicitly.)

In view of the coarseness of the x and z resolution relative to the y resolution, the con-

vective time scale for property transfer between laterally adjacent ODT sub-volumes is the

LES time scale �t rather than the �ne-grained time scale on which other ODT processes

evolve. Accordingly, temporal �ltering suppresses unphysical high-frequency 
uctuations

due to the more rapid evolution processes implemented in the vertical direction (which can

be resolved temporally owing to the �ner spatial resolution in that direction). These consid-

erations are analogous to time-stepping issues that arise in any numerical scheme involving

high-aspect-ratio control volumes.

A simple temporal �lter that would serve this purpose is

V1(y; t) =
1

�t

Z
t

t��t
v1(y; t

0) dt0 (4.16)

V3(y; t) =
1

�t

Z
t

t��t
v3(y; t

0) dt0; (4.17)

where �t is the LES time step. A computationally more convenient de�nition that serves

the same purpose is introduced in Section 4.4.1.

There is an important distinction between the instantaneous wall-normal ODT velocity

component v2 and the instantaneous tangential velocity components v1 and v3. In the ap-

proach developed here, v1 and v3 are treated as true advecting velocities, and we compute V1
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and V3 from them. However, v2 is not considered an advecting velocity because eddy events

are the model for turbulent transport in the wall-normal direction. Instead we conceptualize

v2 as a representation of the wall-normal velocity component kinetic energy per unit mass

(actually the square root of that energy). Thus, no pressure gradient is included in the

evolution equation for v2. To compute the advective transport velocity in the wall-normal

direction, V2, we simply apply continuity and integrate from the wall, as follows:

V2(y; t) = �
Z

y

0

 
@V1

@x1
+
@V3

@x3

!
dy: (4.18)

Note that this automatically satis�es continuity within the LES-scale control volume.

The ODT evolution equations are solved only in the inner region and boundary conditions

must be applied both at the wall (y = 0) and at the top of the inner region (y = �Y ). At

y = �Y this is accomplished by assuming a linear variation of all velocity components at

every instant in time between the last ODT node (y = �Y ) and the corresponding LES

values in the overlap region at y = 3
2
�Y . (The LES grid structure and its implications

for LES/ODT coupling are discussed in Section 4.6.) Given this assumption, all required

boundary 
uxes (both advective and di�usive) can be computed based on the boundary

conditions at y = 0:

v1 = v2 = v3 = 0

V2 = 0 (4.19)

and at y = �Y :
@vi

@x2
=
�
�uijy=(3=2)�Y � vijy=�Y

�
=[(3=2)�Y ]: (4.20)

Note that in Eq. (4.20), �uijy=(3=2)�Y denotes the current value of LES velocity component i

at a distance from the wall equal to 3
2
�Y .

4.2.3 LES/ODT Eddy Events

Although the ODT evolution equations are only solved in the inner region, eddy events can

extend from any location within the inner region out into the LES domain. In stand-alone

ODT, the length scale of the largest possible eddy event, Lmax, corresponds to the integral

scale of the 
ow problem. For example, in channel 
ow the largest possible eddy is limited

by the distance between the two walls, but may be set to a lower value if warranted (Section

4.1.4). However, as an LES subgrid model ODT must only model the unresolved small-scale

eddies. Independent of �lter type, the smallest possible eddy that can be represented on the

grid by an LES is 2� (sometimes called the Nyquist limit), but this will not be an accurate

representation. In practice, both the numerical method and the particular �lter type chosen

will determine the length-scale range over which the resolution of smaller eddies degrades.
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When ODT is modeling the LES subgrid processes, the value for Lmax should correspond

to these same limits. In other words, the largest length scales modeled by ODT should

correspond to the smallest length scales captured by the LES. How we determine the value

of Lmax is discussed in Section 4.5.

Fig. 33 illustrates that all eddy events are required to extend into the inner region, and

that eddies are allowed to extend out as far as permitted by the eddy-size bound Lmax.

Eddies can therefore extend out as far as y = �Y + Lmax, which sets the vertical extent

of the overlap region. Eddy events can thus transfer 
uid between the inner and overlap

regions and within each region. Overlap-region LES control volumes do not contain ODT

substructure. Transfers that involve the overlap region therefore employ a coarse-grained

representation of eddy e�ects in the overlap region. Namely, 
uxes corresponding to transfers

of 
uid properties (momentum, mass fractions, etc.) across overlap-region LES control-

volume interfaces are summed at each interface (Section 4.4.1).

Overlap-to-inner transfer requires a construction of ODT-resolved information using overlap-

region LES-scale variables. For this purpose, linear interpolation of the LES-scale variables

in the overlap region is used to provide ODT-resolved values as needed.

The accumulated 
uxes due to eddy events that transfer 
uid across LES control-volume

interfaces are incorporated into the LES time-stepping scheme, both to enforce consistency

between ODT and LES evolution and to evaluate unclosed terms in the LES evolution

equations (Section 4.4.2). Note that the LES-scale properties at the LES node points are

considered unchanged during the �ne-grained ODT time evolution. LES-scale e�ects of ODT

processes are implemented during time advancement of the LES equations.

4.2.4 Synopsis of the Coupled LES/ODT Model

As modeled here, the equations simulating the turbulent 
ow are distinct in each of the

three 
ow regions, i.e., the ODT inner region, the LES/ODT overlap region, and the LES

core-
ow region.

In the ODT inner region, the revised ODT evolution Eqs. (4.14) and (4.15) are solved sub-

ject to the boundary conditions given by Eqs. (4.19) and (4.20), and the advecting velocities

de�ned in Section 4.6.1 (with V2(y; t) de�ned by Eq. (4.18)). Eddy events occur at various

times and locations, and with various length scales as per the stochastic model described in

Section 2.

When an instantaneous eddy event extending into the overlap region occurs, time-accurate

implementation of conservation laws would require all a�ected LES quantities to be adjusted

based on the net transport across each LES control-volume face. However, in practice, the

LES equations of motion are solved numerically using time steps that are much larger than

those required by the ODT subgrid model. In the current numerical implementation (de-

scribed in detail in Section 4.6), explicit LES/ODT coupling is accomplished by accumu-
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lating the net transfer across each LES control-volume interface (from all processes) during

the ODT evolution within an LES time step. The net transfer during this time period is

summed and then divided by the LES time step - thus providing an explicit 
ux value for

input to the LES equations, in lieu of instantaneous adjustment of LES values when eddy

events occur. These inputs supplement LES 
uxes in the LES/ODT overlap region (that

are modeled based on the LES model chosen for the bulk 
ow), and constitute the up-scale

coupling between the ODT equations and the LES equations. Down-scale coupling occurs

when the LES equations are solved. LES time advancement yields a revised LES velocity

�eld that re
ects the global e�ects of the pressure �eld. At this point, ODT velocities in

the inner region are adjusted to be consistent with LES. This adjustment event is similar to

an ODT eddy event in that it occurs at an instant in time. However, this event only a�ects

the average velocity in the inner region, not the ODT scale variations. The speci�c method

used here is explained in Section 4.6.4.

In the LES/ODT overlap region, the LES equations (Eqs. (2.7) and (2.8)) are solved sub-

ject to a 
ux-matching condition at the LES/ODT interface (i.e., y = �Y ), and the addition

of the supplemental 
uxes caused by eddy events that extend across LES cell boundaries

in the overlap region. Note that the 
ux at y = �Y includes a 
ux implied by Eq. (4.18)

and the net e�ect of instantaneous transport due to eddy events extending outward from the

ODT inner region (see Fig. 33).

In the LES core-
ow region, the LES equations are solved without modi�cation.
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Figure 30: Budget of hv02
1 i in channel 
ow, in wall coordinates: ||, production (upper), dissipation (lower);

{ {{, advective transport; | �|, viscous transport; | � � �|, scrambling. ODT and DNS [55] results are

plotted right and left of centerline, respectively.
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Figure 31: Illustration of the ODT inner and overlap region domains in the LES mesh.
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Figure 32: Illustration of ODT sub-control volumes embedded in an \inner-region" LES control volume.

The nominal ODT domain is the wall-normal line passing through the center of the control volume. Points

of the discretized domain mark the ODT sub-control volumes.
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Figure 33: Illustration of allowable eddy event locations within the near-wall region. The dashed line in the

inner region indicates that the �ne grained ODT domain exists only in this region.
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4.3 Description of the LES Simulation Code

The base LES code used for testing the near-wall ODT subgrid model is a structured-grid

second-order �nite-di�erence code speci�cally designed for doing channel 
ow [54], and was

obtained from Stanford University through our collaboration with the Center for Turbulence

Research. In this code, periodic boundary conditions are imposed in the streamwise (x)

and spanwise (z) directions and the 
ow is driven by a constant pressure gradient in the

streamwise direction. The grid is staggered (see [28, 59, 67]) and can be stretched in the

wall-normal direction using a hyperbolic-tangent mapping if desired.

A semi-implicit time-integration algorithm is used where the di�usion terms in the wall-

normal direction (y) are treated implicitly with the Crank-Nicholson scheme, and a third-

order Runge-Kutta scheme (see [72]) is used for all other terms. The fractional-step method

of Dukowicz & Dvinsky [17] is used in conjunction with a Van Kan [33] type of pressure

term. The corresponding Poisson equation for pressure is solved using a tri-diagonal matrix

algorithm in the wall-normal direction and fast Fourier transforms (FFT) in the periodic

directions.

The three-step time-advancement scheme used in the base LES code can be written in

the following way:

�uk
i
� �uk�1i

�t
= �kLy(�u

k�1
i

) + �kLy(�u
k

i
) + (�k + �k)Lxz(�u

k�1
i

)

�
kN(�uk�1i )� �kN(�uk�2i )� (�k + �k)
1
�

Æ �P k

Æxi
� (�k + �k)

PGi

�
(4.21)

Æ�uk
i

Æxi
= 0; (4.22)

where k = 1, 2, 3 denotes the sub-step number, �u0
i
and �u3

i
are the LES velocities at the

beginning and end of the time step, and PGi denotes the constant portion of the pressure

gradient driving the channel 
ow (zero for i = 2 and 3). In the present implementation,

Æ=Æxi denotes a second-order central-di�erence operator and accordingly, N(�ui) represents a

second-order �nite-di�erence approximation to the advection terms:

N(�ui) =
Æ

Æxj
(�ui�uj): (4.23)

Two distinct operators for the viscous terms, Lxz(�ui) and Ly(�ui), are de�ned so that the

implicit treatment of the wall-normal di�usion terms can be clearly distinguished:

Lxz(�ui) =
Æ

Æxj

"
(� + �S)

 
Æ�ui

Æxj

!#
(4.24)

Ly(�ui) =
Æ

Æx2

"
(� + �S)

 
Æ�ui

Æx2

!#
; (4.25)
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where the right-hand side of Eq. (4.24) is summed over j = 1 and 3, the relation � = �=�

and the de�nition �S = �S=� of the kinematic eddy viscosity have been introduced, and

second-order central di�erencing is again used.

The time-advancement coeÆcients �k, �k, 
k, and �k, k = 1, 2, 3, are constants selected

such that third-order accuracy is obtained for the advection term and second-order accuracy

for the viscous term. The values of these coeÆcients are


1 = 8=15 
2 = 5=12 
3 = 3=4

�1 = 0 �2 = �17=60 �3 = �5=12

�1 = 4=15 �2 = 1=15 �3 = 1=6

�1 = 4=15 �2 = 1=15 �3 = 1=6:

Because �1 vanishes, Eq. (4.21) does not require the evaluation of �uk�2i for k = 1. The

e�ective sub-time-step for this method is �tk = (�k + �k)�t.

Applying the fractional-step method of Dukowicz & Dvinsky [17] to Eqs. (4.21) and (4.22),

we obtain

�̂u
k

i
� �uk�1i

�t
= �kLy(�u

k�1
i ) + �kLy(�̂u

k

i
) + (�k + �k)Lxz(�u

k�1
i )

�
kN(�uk�1
i

)� �kN(�uk�2
i

)

�(�k + �k)
1
�

Æ �P k�1

Æxi
� (�k + �k)

PGi

�
(4.26)

�uk
i
� �̂u

k

i

�t
= �Æ�

k

Æxi
; (4.27)

where �k and �P are related by

Æ�
k

Æxi
= (�k + �k)

1

�

Æ

Æxi
( �P k � �P k�1)� �kLy(�u

k

i
� �̂u

k

i
); (4.28)

and the hat symbol placed over a variable denotes an intermediate value. For clarity we

note that Eq. (4.21) can be recovered by solving for �̂u
k

i
in Eq. (4.27), and then substituting

this identity and that of Eq. (4.28) back into Eq. (4.26). In practice, the rightmost term in

Eq. (4.28) is neglected, resulting in the `splitting' error associated with this method.

Solving for �uk
i
in Eq. (4.27) and applying the divergence-free constraint, Eq. (4.22), we

obtain the discrete Poisson equation,

1

�t

Æ �̂u
k

i

Æxi
=

Æ
2
�
k

ÆxiÆxi
: (4.29)

To advance from sub-step k-1 to k requires the completion of a two-part fractional-step

cycle. In the �rst part, Eq. (4.26) is solved for �̂u
k

i
, the intermediate or interim velocity �eld.
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In the second part, Eq. (4.29) is solved for �k. Knowing �k, Eq. (4.28) is integrated (with the

rightmost term omitted) to compute the change in pressure from k � 1 to k, and Eq. (4.27)

is used to compute the new velocity �eld, �uk
i
.

The subgrid-scale model used to compute the subgrid eddy viscosity is the dynamic

Smagorinsky model of Germano [24] with the least-square technique of Lilly [44] as described

in Section 2. Averaging in the spanwise and streamwise directions is used to compute CS

(see Eq. (2.33)) and �ltering is performed in these directions but not in the y direction. The

ratio of the test �lter width to the grid �lter width is taken to be 2.0.

4.4 Numerical Implementation of the Near-Wall Model Within a LES Code

In order for the LES pressure �eld to couple properly to the ODT velocities, it is important

to assure that the spatial locations of the ODT velocity components are consistent with

the LES numerical discretization. In the staggered-grid method used in the LES code, the

control volumes for mass and momentum are o�set from one another such that the velocity

components are calculated for the points that lie on the faces of the mass-conservation control

volumes. This is illustrated in Fig. 34, where the LES-scale velocities are represented with

large arrow heads, and the locations of the associated ODT velocity components are given

by the points that lie on the lines shown.

It is also important for the ODT temporal advancement scheme to couple in a consistent

way to the LES code. As described above, the LES time-integration scheme used here is

a three step Runga-Kutta method where each step consists of a two-part fractional-step

cycle. To use the ODT wall model, we modify this cycle to include two additional parts

speci�c to the near-wall ODT model. In the new part 1, the inner region ODT equations

are evolved and the momentum exchange at LES interfaces due to the ODT processes are

summed. At the end of this part, values for interim LES velocities �̂u
k

i
in the ODT inner

region are computed from these results. In part 2, modi�ed forms of Eq. (4.26) are solved for

�̂u
k

i
throughout the rest of the domain. The modi�cations correspond to ODT contributions

to the surface 
uxes in the LES/ODT overlap region. Part 3 is the continuity-enforcing

pressure-projection step that involves solving a discrete Poisson equation for a pressure-

adjusted velocity �eld �uk
i
. This part is unchanged. The fourth and �nal part consists of

adjusting the ODT-resolved pro�les so that the step-ending values of Vi(y) and vi(y) are

consistent with the new pressure-adjusted LES velocity �eld in the inner region.

Details of each of these four parts are given next.

4.4.1 Details of part 1

We begin by de�ning an ODT time step �t0, and the associated ODT time-step index k0.

The value of �t0 is much smaller than the LES time step �t so that a signi�cant number
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of ODT time steps must be taken to advance in time from LES substep index k � 1 to k,

where k = 0 represents the �nal state of the previous LES time step.

Each ODT time step consists of (a) the evolution of the molecular equations from time t

to t+�t0, (b) the stochastic sampling procedure by which eddy events are determined, and

(c) implementation of the selected eddy (if the sampling procedure determines that an eddy

should be implemented).

The molecular equations are numerically integrated using the following explicit numerical

approximation to Eq. (4.14):

v
k
0

i
� v

k
0�1

i

�t0
=

Æ

Æx2

 
�
Æv

k
0�1

i

Æx2

!
� Æ

Æxj

�
V
k
0�1

j
v
k
0�1

i

�
� PGi

�
; (4.30)

where PGi denotes the constant mean pressure gradient imposed on the 
ow, which in

channel 
ow is zero for i = 2 and 3. This term does not re
ect the 
uctuating pressure �eld

that arises due to the turbulent 
uctuations in the 
ow. This part of the pressure �eld is

modeled through the pressure projection (see Sections 4.4.3 and 4.4.4). Second-order central

di�erencing is used to compute all gradients, and boundary conditions are imposed as per

Eqs. (4.19) and (4.20).

To compute the new ODT advecting velocity �eld V k
0

i
, an alternative to Eqs. (4.16) and

(4.17) has been implemented that avoids the need to maintain a memory-intensive history of

the instantaneous ODT velocity �eld. Namely, a temporal `mixing-cup' approach is adopted.

Given the values of Vi at time index k0 � 1, the values at k0 are computed as

V
k
0

i
=

 
1� �t0

�t

!
V
k
0�1

i
+

 
�t0

�t

!
v
k
0

i
(4.31)

for i = 1 and 3 and Eq. (4.18) is applied for i = 2. We note that an alternative (not

implemented here) to using Eq. (4.31) would be to hold V k
0

i
constant over the LES sub-step

k to k + 1, and update these values at the same time the LES velocity �eld is updated.

After the molecular processes have evolved from time t to t + �t0, the possibility of an

eddy event is evaluated through the standard ODT stochastic-sampling procedure. However,

allowable eddies are limited to those that extend into the inner region (as illustrated in

Fig. 33), and the length of the largest possible eddy, Lmax, is a model parameter that, for

now, must be speci�ed. By design it must be of the order of the smallest length scale resolved

by LES. Since this is a function of the numerics and �ltering used in the LES code, its speci�c

value must be likewise dependent.

If a trial-eddy location and length are chosen such that the eddy extends into the overlap

region (see Fig. 33), ODT-resolved values are obtained in that region by linear interpolation

of the LES �eld variables, as explained in Section 4.2.3.

Although eddy events implemented in the usual manner would modify property pro�les in

the LES/ODT overlap region, the modi�cations are not implemented in that region. Rather,
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statistics are gathered, as described next, that subsequently enable LES-scale implementation

of the implied property transfers across LES control-volume interfaces.

As the ODT velocity �elds are advanced in time from LES substep index k � 1 to k,

momentum is transferred across the interface between the inner and overlap regions by three

mechanisms: molecular di�usion, wall-normal advection, and eddy events. In addition, eddy

events that extend to points greater than y = 2�Y induce momentum transfer across LES

control-volume interfaces in the overlap region. In order for the ODT model to couple

properly to the LES, a running sum of the net transport across all LES control-volume

interfaces due to ODT processes must be maintained. For convenience in explaining the

model, we de�ne these sums as follows:

S
n

i
= i

th component momentumtransport (per unit time, mass, and area) across an interface

between a near-wall LES control volume n (where n = 1 denotes the inner region) and

its adjacent (n+ 1)-layer LES control volume.

S
n

Di
= that portion of Sn

i
due entirely to the molecular-di�usive term of Eq. (4.30).

S
n

Ai
= that portion of Sn

i
due entirely to the advective term of Eq. (4.30).

S
n

Ei
= that portion of Sn

i
due entirely to ODT eddy events.

For n = 1, these sums are computed as

S
1;k
i = � �t0

�tk

P
k0

�
�
Æv

k
0
�1

i

Æx2

�����
y=�Y

+ �t0

�tk

P
k0

�
V
k
0�1

2 v
k
0�1

i

����
y=�Y

+ 1
�tk

P
m E

1
m;i

= S
1;k
Di

+ S
1;k
Ai

+ S
1;k
Ei

(4.32)

where the additional superscript k has been added to denote that these quantities are com-

puted during the interval �tk from LES substep k � 1 to k.

The only ODT process that can in
uence the LES equations at control volume interfaces

greater than y = �Y is an eddy event. Thus for n > 1, Sn
Di

= S
n

Ai
= 0, and we can write

S
n;k

i = S
n;k

Ei
=

1

�tk

X
m

E
n

m;i
(for n > 1); (4.33)

where �tk is the sub-time-step de�ned in Section 4.3 and E
n

m;i
denotes a transfer of i-

component momentum across an interface between LES layers n and n + 1 due to an eddy

event m. It is easily computed as the x2-integrated di�erence in momentum (after minus

before) on one side of the interface following an eddy event.

At the end of part 1, the ODT velocity �eld has evolved due to advection, di�usion, and

eddy events, but without a two-way coupling with the LES velocity �eld (which has been

held constant). Part 1 is the ODT analog of solving Eq. (4.26) for the interim LES velocity

�̂u
k

i
(part 2 below). Thus ODT values that have been evolved through the end of part one

are in like manner hereafter denoted with a hat, e.g., V̂ k

i
(y).
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4.4.2 Details of part 2

In part 2 we solve for the interim LES velocity �eld �̂u
k

i
throughout the rest of the domain

outside of the inner region, a process corresponding to the solution of Eq. (4.26), but with

modi�cations associated with the LES/ODT overlap region that re
ect ODT contributions

to the LES surface 
uxes in that region.

In the �rst LES layer of the overlap region, the transport across the LES/ODT interface

at the top of the inner region is completely speci�ed by the values computed in part 1. Also,

the LES-speci�ed advective 
ux across the top of this layer is enhanced by any contributions

due to eddy events bridging this face. To account for these e�ects, Eq. (4.26) must be

modi�ed (in this layer only) as follows:

�̂u
k

i
� �uk�1i

�t
=

(�+�S )

�x2

�
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�
Æ�u
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+ �k

�
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S
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h
S
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Ai

i
�(�k + �k)

1
�

Æ �P k�1

Æxi
� (�k + �k)

PGi

�
: (4.34)

Here, the modi�ed convection operator Nxz is de�ned as

Nxz(�ui) =
Æ

Æxj
(�ui�uj); (4.35)

where the right-hand side is summed over j = 1 and 3. Note that the di�erence between

Eq. (4.26) and Eq. (4.34) is that all �nite-di�erence terms associated with transport across

the LES/ODT interface at the top of the inner region are replaced by the explicit sums

computed in part 1, and the 
uxes at the top of layer 2 are augmented by ODT contributions.

For example, the two RHS terms on the �rst line of Eq. (4.34) are the di�usion terms

(molecular and subgrid turbulent) across the y = 2�Y interface from the normal LES

model. Because the wall normal di�usion terms are integrated using a Crank-Nicholson

scheme, there are both �k and �k contributions to the sub-time-step advancement. On the

second line of Eq. (4.34) are found the eddy event contributions to the transport at y = 2�Y

(S
2;k�1
Ei

) and y = �Y (S
1;k�1
Ei

), and the molecular di�usion term evaluated at the top of the

ODT domain (S1;k�1
Di

). Similarly, wall-normal advection terms for y = 2�Y are found on line

4 (where both 
k and �k Runge-Kutta contributions are represented) and the ODT advective

term for y = �Y (S
1;k�1
Ai

) is on line 5.

For all other LES volumes located within the overlap region (denoted by the superscript

n, with n > 2), Eq. (4.26) is revised to look as follows:

�̂u
k

i
� �uk�1i

�t
= �kLy(�u

k�1
i ) + �kLy(�̂u

k

i
)� (�k+�k)

�x2

�
S
n;k�1
Ei

� S
n�1;k�1
Ei

�
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+(�k + �k)Lxz(�u
k�1
i

)� 
kN(�uk�1
i

)� �kN(�uk�2
i

)

�(�k + �k)
1
�

Æ �P k�1

Æxi
� (�k + �k)
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�
: (4.36)

Note that the only di�erence between Eq. (4.26) and Eq. (4.36) is the addition of wall-normal

transport terms coming from the ODT eddy events crossing LES boundaries as computed

in part 1.

For LES volumes located outside of the LES/ODT overlap region, Eq. (4.26) is solved

without modi�cation.

4.4.3 Details of part 3

Part 3 requires values for the interim LES velocity �eld at all locations. To obtain these

values in the ODT inner region, we apply Eq. (4.13) to the ODT advecting velocities, as

follows:

�̂u
k

i

���
inner region

= �̂V i � 1

NODT

NODTX
m=1

V̂i;m (4.37)

for i = 1 and 3. Equation (4.37) is not valid for the wall-normal velocity, i = 2, because

of the de�nition of the ODT control volumes and locations as illustrated in Figs. 32 and

34. At the top of the inner region, the control surface through which the ODT advecting

velocity V2jy=�Y 
uxes 
uid corresponds exactly to the LES interface through which the

LES velocity component �u2 
uxes 
uid. The LES velocity is spatially �ltered over a height

�Y , but the ODT advecting velocity corresponds to a cell of height �Y=NODT. For use in

part 3, the ODT velocity is actually a more accurate approximation for the desired quantity

because it is determined by enforcement of continuity, Eq. (4.18), re
ecting ODT evolution

since the previous LES time step. Thus we simply set

�̂u
k

2

���
inner region

= V̂2jy=�Y : (4.38)

.

Part 3 begins by solving the discrete Poisson equation, Eq. (4.29), for �. Knowing �k,

Eq. (4.28) is integrated (with the rightmost term omitted, as explained in Section 4.3) to

compute the change in pressure from k � 1 to k. The new pressure is then given by

�P k = �P k�1 +
��

k

�k + �k
: (4.39)

Next, Eq. (4.27) can be applied to solve for the new velocity �eld:

�uk
i
= �̂u

k

i
��t

Æ�
k

Æxi

: (4.40)

As indicated by Eqs. (4.37) and (4.38), �̂u
k

i
in the inner region is determined solely by ODT

quantities.
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4.4.4 Details of part 4

The fourth and �nal part of the cycle consists of adjusting the ODT-resolved pro�les of

V̂
k

i
(y) and v̂k

i
(y) to be consistent with the new pressure-adjusted velocity �eld in the inner

region, but without signi�cantly modifying the microstructure of the ODT pro�les. Fig. 35

is useful in explaining how this is done.

Consider an ODT advective velocity �eld V̂ k

i
(y) in the inner region after the completion of

part 1. Since it has not yet been adjusted by the pressure-projection procedure, this pro�le

is denoted with a hat. It has an average value �̂V
k

i
(see Eq. (4.37)), but may have an irregular

variation with y. A linear pro�le can be drawn from y = 0 to y = �Y that passes through

the value �̂V
k

i
at exactly y = �Y=2. At any location y from the wall, one can compute a

di�erence or `variation' between the local value of V̂ k

i
(y) and this linear function.

After part 3 is completed, a new adjusted value for �uk
i
in the inner region is known. For

i = 1 and 3, we impose the requirement that the di�erence (as a function of y) between the

new V
k

i
(y) and the line 2�uk

i
y=�Y is the same as the di�erence function V̂ k

i
(y)� 2 �̂V

k

i
y=�Y .

Put another way, we obtain V k

i
(y) by adding a linear pro�le to V̂ k

i
(y) that enforces �V k

i
= �uk

i
,

where the left-hand side of this equality represents the average of V k

i
(y) over 0 � y � �Y ,

as de�ned by Eq. (4.13). This gives

V
k

i
(y)� 2

�uk
i
y

�Y
= V̂

k

i
(y)� 2

�̂V
k

i
y

�Y
(4.41)

for i = 1 and 3. After V k

1 (y) and V
k

3 (y) are found, V
k

2 (y) is computed using Eq. (4.18).

To preserve the relationship between instantaneous and time-�lteredODT velocities when

this adjustment is performed, the ODT instantaneous velocity pro�les are adjusted based

on the relationship

v
k

i
(y)� 2

�uk
i
y

�Y
= v̂

k

i
(y)� 2

�̂V
k

i
y

�Y
(4.42)

for i = 1 and 3. vk2(y) is not adjusted because it is not kinematically linked, through relations

like Eqs. (4.31) and (4.37), to LES-scale processes.

At the end of part 4, all values have been advanced from LES sub-time-step k � 1 to k.

4.4.5 Remarks

The LES/ODT subprocesses and couplings are formulated to be complementary, each pro-

viding the other with the information needed to simulate 
ow evolution within the range of

scales that it represents. However, we note here that neither the ODT momentum equation,

Eq. (4.14), nor the adjustment in part 4 communicates the large-scale forcing to the wall-

normal (i = 2) ODT velocity component. It is neither necessary nor desirable to couple v2

to these forcings. Continuity is suÆcient to determine the advective velocity V2 that pro-

vides an LES-scale representation of the e�ect of ODT evolution on wall-normal 
ow. As
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in ODT stand-alone implementation, v2 is a kinetic-energy reservoir that is incorporated to

improve the �delity of the ODT representation of energy transfers among the three velocity

components. Owing to the distinctive role of v2 in the formulation of the ODT event-rate

distribution, v2 may have additional physical signi�cance in future applications to transition

and other phenomena that are sensitive to details of this formulation.

LES velocity locations
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Figure 34: Spatial location of LES and ODT velocity components on a staggered grid.
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Figure 35: Illustration of how an ODT velocity �eld is adjusted following a pressure-projection update.
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4.5 Coupled LES/ODT Simulations of Turbulent Channel Flow

Fully developed turbulent channel 
ow has been studied extensively in the past and both

experimental [13, 77] and numerical DNS data [55] are available for comparison purposes.

Stand-alone ODT results for this 
ow are presented in Section 4.1.4. Here we present results

based on the coupled LES/ODT model.

The LES computational domain is 2�, 2�=3, and 2 in the streamwise (x), spanwise (z), and

wall-normal (y) directions, respectively. Calculations were performed at Reynolds numbers

based on friction velocity ranging from 395 to 10,000 in order to test the modeling over a wide

range of Reynolds numbers. For all but the highest-Reynolds-number 
ows considered, the

domain is discretized by a relatively coarse but uniform 32� 32� 32 grid in the streamwise,

spanwise, and wall-normal directions. As the Reynolds number is increased, a smaller portion

of the total kinetic energy is captured on the LES grid. Thus for the higher Reynolds-

number 
ows the resolution was increased and a uniform 48 � 48 � 64 discretization was

used. Although more re�ned LES meshes could have been chosen, one purpose of this work is

to test the new approach under coarsely meshed LES conditions in order to determine if the

ODT subgrid modeling can still be usefully applied. To resolve the ODT domain properly,

an ODT near-wall mesh spacing of approximately 1 wall unit (y+) was found to be suÆcient

to achieve grid-independent results.

To perform a set of coupled LES/ODT calculations, the ODT model constants C, Z, �,

and Lmax must be speci�ed. � = 2=3 is used for all results shown in this section, and Z

is again assigned the value 98. These values, together with the choice C = 12:73, yield a

good �t of DNS data by stand-alone ODT (Section 4.1.4). For LES/ODT, it is found that a

slightly lower value of the overall rate constant, C = 9:9, is the best value for matching the

DNS mean velocity pro�le at Re� = 590. This adjustment re
ects the impact of the large

scale LES forcings on the ODT model when coupled together. Although the adjustment is

relatively small, it nevertheless is suÆcient to imply a distinction between the coupling of

near-wall and bulk regions in stand-alone ODT and LES/ODT, respectively.

The coupled LES/ODT model requires a di�erent approach for determining the maximum

eddy length parameter, Lmax, than was used when doing stand-alone ODT calculations.

This is because the integral length scale of the 
ow (e.g, the channel width) is no longer

an appropriate measure of this parameter. Instead, Lmax is now associated with the LES

�lter width, and determines the length of the overlap region (as illustrated in Fig. 31).

It corresponds physically to the largest length scale captured by ODT, and should also

correspond approximately to the smallest length scales resolved by the LES. Thus, one can

also think of an overlap region of length scales in which both ODT and LES models are

active.

To determine the appropriate value of Lmax, a simple parametric sensitivity study was

performed. Fig. 36 illustrates the results of this exercise for 
ow at Re� = 590. Four di�erent
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Case Re� Re NODT �y+
ODT

Nx Ny Nz

A 395 14020 24 1.03 32 32 32

B 590 22472 32 1.17 32 32 32

C 1200 49336 64 1.17 32 32 32

D 2400 108624 128 1.17 32 32 32

E 4800 234332 128 1.17 48 64 48

F 10000 534224 256 1.17 48 64 48

Table 1. Computed cases.

simulations were performed, keeping all other values and conditions constant except for the

value of Lmax. A large change is seen as Lmax is increased from 2�Y to 3�Y , but very little

di�erence is seen as its value is increased from 3:5�Y to 4�Y . These results are consistent

with the notion that this value should correspond approximately to the smallest length scales

resolved by the LES on the numerical mesh. For all other calculations shown here we use

the value Lmax = 3:5�Y .

Table 1 summarizes six calculations performed as a test of the current LES/ODT coupled

model. In each of these runs, the values of C, Z, �, and Lmax were held �xed at the values

speci�ed above. In each case, the simulation was started by specifying a randomly perturbed

initial velocity pro�le and then allowing the computation to proceed without taking statistics

until the initial transient behavior had settled out and the time-averaged wall stress balanced

the mean pressure gradient exactly. This typically occurred within several hundred non-

dimensional time units (based on bulk velocity and channel half width). Statistics were

then taken over non-dimensional time periods of about 300 time units. As a �nal check, the

calculations were then continued over a similar time period and the results compared so as

to assure that the statistics were adequately converged.

All calculations were performed on single-processor SGI workstations with run times vary-

ing from several hours for the lower-Reynolds-number 
ows to several days for the highest-

Reynolds-number 
ows. However, extensive optimization of the code and model algorithms

has not yet been attempted, and some improvement in run times would be expected when

this is done.

Figure 37 helps illuminate the dynamics of the coupled LES/ODT model by showing near-

wall mean and instantaneous velocity pro�les for an illustrative calculation at Re� = 1200. In

contrast to the smoothly varying time-averaged pro�le that is shown, instantaneous pro�les

are highly irregular. Of particular note are the wrinkling e�ects of eddy events on the velocity

pro�les in the ODT inner region. At the particular instant shown, the e�ects of both large

105



and small eddy events can be clearly seen. Furthermore, the smoothing e�ect of molecular

processes over time can be seen and contrasted to the sharp gradients imposed by recent

eddy events.

Figure 38 presents LES/ODT model results for the mean velocity pro�les over the Reynolds-

number range indicated in Table 1. For cases A and B, the DNS data of Moser et al. [55]

are available and are used for direct comparison. For all cases, the inner law (u+ = y
+)

and a commonly accepted [13] log law (u+ = 2:44 ln(y+) + 5:2) are also plotted for compari-

son. Data symbols are used to denote LES/ODT node-point values in order to highlight the

increased resolution of the model in the ODT domain.

At all Reynolds numbers, the simulations produce a physically realistic viscous sublayer

smoothly transitioning through the bu�er zone into a log layer. At the edge of the overlap

region (between the second and third LES nodal values), a slight rise in the mean pro�le can

be noticed in the lower-Reynolds-number cases. This is likely due to imperfect transitioning

from ODT-based modeling of the turbulent transport to the LES modeling in the overlap

region. This aspect may improve with model re�nement. At the highest Reynolds numbers

(cases E and F), the mean pro�le in the LES region above the ODT domain is somewhat

high. It is not clear yet why this occurs, but it may re
ect under-resolved LES e�ects

coupled to imperfections in the overlap-region transition to the ODT near-wall domain.

Further investigation will be needed to better understand the performance of the coupled

model at these higher Reynolds numbers. Overall, the coupled LES/ODT model performs

remarkably well at reproducing the mean velocity pro�les for this 
ow and compares very

favorably with other recent work in this area (e.g., [57, 42, 60]).

Figure 39 is a plot of the friction coeÆcient as a function of Reynolds number. The

LES/ODT results, extending over a wide range of the bulk-
ow Reynolds number, are in

good agreement with DNS and experimental results. At the highest Reynolds numbers

(cases E and F), the LES/ODT results suggest a trend that is slightly high compared to

the correlation of Dean [13]. The source of this di�erence is most likely due to the poor

LES resolution of the wake region, leading to a comparatively lower bulk velocity and thus

a higher friction coeÆcient (see [9] for a discussion of this topic).

Figures 15-19 are plots of root-mean-square (RMS) velocity 
uctuation pro�les, normal-

ized by u� . These results are important because they help characterize the near-wall dynamic

behavior that cannot be obtained from low-order RANS-based models. The dynamic 
uc-

tuations that are re
ected in these pro�les are also important to multiphysics applications

where physical processes such as heat transfer and chemical reactions are strongly a�ected.

In Fig. 40 LES/ODT computed RMS velocity 
uctuation pro�les at Re� = 590 are

compared with the DNS calculations of Moser et al. [55] and results of the previously

discussed stand-alone ODT calculations (Section 2.4). We begin by noting that overall, the

magnitudes and shapes of the LES/ODT RMS velocity 
uctuation pro�les compare quite

favorably with DNS and show noticeable improvement over stand-alone ODT results. This
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improvement re
ects the impact of large scale LES forcings on the ODT model when coupled

together, and highlights the complementary nature of the combined modeling approach.

In comparing LES/ODT results for urms with DNS, we can see (1) perfect agreement

for y+ < 9, (2) a somewhat 
attened peak region where the LES/ODT results are about

10 percent lower than DNS, (3) good agreement (although slightly high) in the central

channel region (y+ > 200), and (4) a rise of LES/ODT values compared to DNS as the wall

is approached from the central region, but a return to the DNS pro�le in the LES/ODT

overlap region. Elevated values of urms near the wall are symptomatic of under-resolved LES

(e.g., Kravchenko et al. [42]), and this �gure illustrates clearly how the ODT subgrid model

coupling acts to suppress this problem.

For stand-alone ODT only a single pro�le is plotted for both wall-normal vrms and spanwise

wrms velocity 
uctuations because in the current three-component model, the statistics for

these two components are identical and their near-wall behavior is intermediate between the

DNS data for vrms and wrms. However, for LES/ODT the pro�les are not identical because

they couple to distinctly di�erent LES velocity �elds. This can be seen in Fig. 40 where

very near the wall, the pro�les are almost identical, but as the top of the inner region is

approached and the coupling to LES becomes stronger, the pro�les diverge. We also note

a small dip in the wrms pro�le at the upper edge of the inner region, and a subsequent

discontinuity in the slope (also seen in each of the other pro�les). This re
ects the abrupt

jump from a �nely resolved ODT mesh to the much coarser LES mesh and may be associated

with the rather simple interfacial boundary conditions applied.

In Fig. 41, LES/ODT results for urms from simulations at six Reynolds numbers are

compared to the DNS results of Moser et al. [55] and the data of Wei and Willmarth

[77]. (Unfortunately, reliable near-wall data for RMS velocity 
uctuations are not currently

available for channel 
ow at high Reynolds numbers comparable to Cases E and F.) This

�gure illustrates that most of the characteristics pointed out in commenting on Fig. 40

remain apparent for all cases considered. All cases collapse to a single curve for y+ < 9, and

show a somewhat suppressed and 
attened peak region relative to DNS and measurements.

One trend of note is the clear transition from scaling on inner variables very near the wall

to the qualitatively correct Reynolds number dependence away from the wall. Although

not plotted here, away from the wall all cases collapse to a single curve if plotted in global

coordinates (y) [37] and show good agreement with the DNS and experimental data.

In Fig. 42, LES/ODT results for wrms are shown. The DNS results of Moser et al. [55] are

once again plotted for comparison with the lower Reynolds number cases. (Note that wrms

data was not obtained by Wei and Willmarth [77]). Although the very near-wall (i.e. y+ < 9)

LES/ODT pro�les are consistently lower than the DNS results, the slight Re dependence

shown by the DNS results even at the lowest values of y+ is captured by the LES/ODT model.

As with the urms results, the peak region is 
attened, but the pro�les converge rapidly to

their expected values away from the wall where LES is unmodi�ed by the near-wall subgrid

107



model.

Figure 43 is a plot of vrms that shows LES/ODT results, the DNS results of Moser et al.

[55] and the data of Wei and Willmarth [77]. Here the LES/ODT pro�les are consistently

higher than the DNS data in the inner region, diverge from scaling on inner variables at a

smaller value of y+, and peak at a lower value of y+ - once again re
ecting the intermediate

nature of the ODT vrms component between the DNS vrms and wrms. At the top of the inner

region, the pro�les tend to dip, due to the stronger coupling to the LES. In the overlap region

the pro�les gradually converge to the LES dominated behavior, which is broadly consistent

with the available data in the central portion of the channel.

In constructing the LES/ODT subgrid model a set of advecting velocities are de�ned in

Section 4.6. V1 and V3 are based directly on v1 and v3 respectively (see Eq.(48)), and results

show that the RMS velocity 
uctuation pro�les based on V1 and V3 are virtually the same

as the RMS pro�les based on for v1 and v3. However, the advecting wall-normal velocity

component V2 is based on satisfying continuity in the ODT sub-control volumes (see Eq.

(35)), and is not directly tied to the ODT component v2. Figure 44 is identical to Fig. 43

except that Vrms is plotted in the inner region instead of vrms. As can be seen, these pro�les

are quite di�erent. Here we see that the LES/ODT values for Vrms are consistently lower than

the DNS data. In fact, the DNS data falls intermediate between the values for Vrms shown

here and the values for vrms shown in Fig. 43. Also of note is the strong Reynolds number

dependence of Vrms even in the very near-wall region. This points out that V2 is subject to

large-scale in
uences even near the wall, which may be an artifact of the LES-scale averaging

(V2 is an average over a X-Z face as illustrated in Fig. 7) or the simple pro�le assumptions

made in constructing the velocity adjustment described in Section 4.6.4. In this context,

V2 may be viewed as an auxiliary quantity used to enforce continuity. v2 provides a better,

though approximate, representation of wall-normal point-value 
ow statistics.
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4.6 LES/ODT Simulations of Turbulent Flow over a Backward Facing Step

To be more generally useful as a near-wall model, the ODT approach must be shown to be

valid for a variety of near-wall 
ow conditions. Turbulent impinging 
ows, developing bound-

ary layers, 
ow separation and reattachment are all examples of important 
ow conditions

for which the new approach should be tested and evaluated.

Here we present results of some preliminary calculations of a reattaching turbulent shear

layer generated as a result of 
ow over a backward facing step. The conditions are for

one of the cases studied experimentally by Kim, Kline and Johnston [38, 39]. For the case

simulated, the ratio of step height H to inlet channel width Win is 0.5 and the Reynolds

number based on Win and the inlet bulk 
ow velocity is 90,000.

This problem was chosen as a preliminary test of the model for the following reason. By

starting the computational domain at the step plane, the same computer code as was used for

the fully developed channel 
ow problem could be used with only a few modi�cations. The

key change is that the 
ow is no longer periodic in the stream-wise 
ow direction. Thus for

this problem the in
ow boundary conditions must be speci�ed, out
ow boundary conditions

treated properly, and the 
ow solver modi�ed to account for the fact that the 
ow is periodic

in only one direction.

Figure 4.6 illustrates the computational domain used in the simulations. A uniform mesh

of 64x48x32 in the streamwise (X), vertical (Y), and transverse (Z) direction was used. The

inlet velocity was curve �t to the experimental data, and was speci�ed as constant in time.

The mesh was not re�ned near the vertical plane, which means that the shear layer emanating

from the inlet at the top of the step was not resolved in the calculation. However, this is not

important for the purposes of this preliminary calculation as the intent was to determine

of the near wall model worked in the region near the reattachment point, independent of

exactly where that point occurred.

All control volumes adjacent to either the upper or lower walls are controlled by the ODT

near-wall subgrid model, in which 45 ODT points per line are employed. The computational

domain extends approximately 19 step-heights downstream from the inlet.

Even though the speci�ed in
ow is steady, the strong shear layer 
owing o� the step

invokes a strongly unsteady 
ow �eld downstream. This is illustrated in Figure 4.6a which

shows the instantaneous streamwise velocity �eld at the channel midplane. Also shown are

the time averaged values of the streamwise velocity component, an instantaneous snapshot

of the pressure �eld averaged through the channel, and the 
ow stream lines computed from

the time averaged velocity �eld.

The results of the calculations demonstrate that the model appears to work as expected

from a qualitative point of view. However, in order to fully test the model, calculations in the

future will be made which include a signi�cant portion of the upstream inlet 
ow domain.

They will also resolve the shear layer after the step in order to access the accuracy of the
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approach in computing the length of the recirculation zone, and provide statistical data with

which to compare with the more detailed results of the experiment.

2/3

Near wall regions where the LES/ODT subgrid model is active
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Figure 45: Sketch of the computational domain for the backward facing step problem (not to scale).
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that the vertical scale is stretched in each plot.
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A Spectral Behavior of RKPM Filters

Begin by considering the discrete fourier transform (DFT) of a periodic function, H(xi), on

a one-dimensional domain of extent L. Discretizing the domain with Nnp particles spaced

�x apart, the inverse DFT is,

fH(kl) = h(kl) =
Nnp�1X
n=0

H(xn) exp(��klxn)�xn; (A.1)

where � =
p�1 and kl = 2�j=L is the wavenumber associated with mode, l (0 � l �

Nnp � 1).

Now, consider the RKPM reproducing equation in the one-dimensional domain,

u
a

j
=

Nnp�1X
i=0

u
I

i
�a(xj � xi)�xi (A.2)

where uI
i
= u

I(xi) is the original function, and �a(�) and u
a

j
= u

a(xj) are the modi�ed

kernel function and resultant �ltered function both at scale a. Recall that a = r�x on the

discretized grid.

The spectral evaluation of Eq. (A.2) begins by placing the periodic waveform,

u
I

i
=

Nnp�1X
l=0

al exp(�klxi) (A.3)

on the one-dimensional domain. Here al is the amplitude associated with mode l and kl

is de�ned above. Note that the summation in Eq. (A.3) over the modes, l, ranges from

0 through Nnp � 1. Modes higher than Nnp � 1 on the discrete particle distribution are

aliased to the lower (discretely represented) modes when the continous uI(x) is sampled.

Thus, even though uI(x) may be a continuous function, its representation uI
i
on the discrete

grid is discrete and higher mode information is \lost". Substituting Eq. A.3 into Eq. A.2

yields,

u
a

j
=

Nnp�1X
l=0

Nnp�1X
i=0

al exp(�klxi)�a(xj � xi)�xi (A.4)

Assuming that �a((xj + n�x)� (xi + n�x)) = �a(xj � xi) where n is an integer (i.e. every

modi�ed kernel function looks like every other function) we may rewrite Eq. (A.4) as,

u
a

j
=

Nnp�1X
l=0

Nnp�1X
i=0

al exp(�klxj) exp(��klvi)�a(vi)�vi (A.5)

where vi = xj � xi and �vi = �xi. Rearranging Eq. (A.5) we have,

u
a

j
=

Nnp�1X
l=0

al exp(�klxj)
Nnp�1X
i=1

exp(��klvi)�a(vi)�vi: (A.6)
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De�ning the individual discrete wave components of uI
j
to be u

I;l

j
= al exp(�klxj) and

substituting Eq. (A.1) into Eq. (A.6) yields,

u
a

j
=

Nnp�1X
l=0

u
I;l

j

f
�a(kl) =

Nnp�1X
l=0

u
a;l

j
; (A.7)

where u
a;l

j = u
I;l

j

f
�a(kl) is the lth mode of uI �ltered though application of Eq. (A.2). Since

u
a

j
is a linear combination of u

a;l

j we can use the ampli�cation ratio of each individual mode,

ARl =
u
a;l

j

uI;l
=
f
�a(kl) (A.8)

as a measure of the �ltering properties of �a as a function of wavenumber of the input signal.

Clearly, the DFT of the modi�ed window function is directly related to the ampli�cation

ratio and is an appropriate measure of the attenuation of a signal passed though the discrete

RKPM reproducing conditions (c.f. Eq. (A.2)).

Equation (A.8) provides a convenient way of calculating the ampli�cation ratio for RKPM

on a uniform grid of particles, where every modi�ed kernel function \looking like" every other

function. Of course, RKPM modi�ed kernel functions, in general, do not look alike from

location to location. Modi�ed kernel functions vary in the domain with particle spacing, and

near boundaries in order to ensure the desired reproducing conditions. For this reason, the

assumptions leading to Eq. (A.8) are invalid and we must evaluate the ampli�cation ratio

directly. Employing Eq. (A.4) and recalling that ua
j
is a linear combination of the u

a;l

j yields,

ARl =
u
a;l

j

u
I;l

j

=

PNnp�1
i=0 exp(�klxi)�a(xj � xi)�xi

exp(�klxj)
: (A.9)

where uI
j
= u

I;0
j
AR0 + u

I;1
j
AR1 + � � �+ u

I;Nnp�1
j

ARNnp. As an aside, note that a comparison

of Eq.s (A.8) and (A.9) suggest that the right-hand-side of the later equation represents the

DFT of some e�ective modi�ed kernel function operating in the region around particle j. At

this time, there is no indication that this is anything more than a curiosity.
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