
5i9^10200Z- -Z ? I Lt. P

n Analysis of Stabilized Integration:
Galerkin Meshfree Methods

Discretizations for Advection Problems

Fifth WCCM 1 Meshless Methods
July 10, 2002

T.E . Voth
Sandia National Laboratories

D. Wang and J .S . Chen
UCLA

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000 .

Sandia
National
laboratories



Overview

• Background and motivation

• Formulation
—Reproducing Kernel Particle Methods (RKPM)

—Stabilized Conformal Nodal Integration (SCNI)

—Von Neumann Analysis

• Results

—Semi-Discrete dispersion characteristics.

—Some transient behaviors
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Why do this type of analysis?

• Provides a baseline for comparison to other
methods.

• Aid in algorithmic design:
- Mass matrix effects.

- Requisite grid resolution.
- Understand short wavelength behavior.

• Reliable tool, though other issues are also
important for advective transport:
- Monotonicity preserving.
- Stability .
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oducing Kernel Particle Method is used
for the spatial discretization.

(xj ) = cp a (xj —xi )d = — j d

[flu i
t [Oa ]

	

[/Q ] t ={180 , 181)

ioaj = { a , Y'ia (xj —xi )}

[m] [fl] = [Po

N, A and M
Ax

are Toeplitz and so commute . Thus,

MU + AU = 0

So that : ua = N a d a Note :

	

d;
Bubnov-Galerkin :

	

Mil + Ad = 0

If domain is periodic and Ax, and r (a = 2r)
constant
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bilized Conforming Nodal Integration
(Development for Diffusion Operator)

Integration constraint for diffusion operator (linear exactness):
NIT

EDY!(xL )wL =0 for {i :supp(f'jnF=~}
L=1
Assummed strain method satisfies constraint:

Duh (xL ) = 1 Jnu hd F =V,(xLAL nL

1
(xL ) _	 	 (x)n(x)d F

AL F
L

The SCNI diffusion operator becomes:

K
iJ

= Q f' (XL P (XL)AL

The SCNI advection operator is approximated as:
NP

Ai j = VP V (xL )AL
L=1

L
rL
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CNI was developed for the diffusion
operator, why use it for advection?

• Stabilized conformal nodal integration was developed to
accurately integrate the diffusion operator . The linear
exactness requirements of the diffusion operator are not
needed for the advection equation for convergence.

• However, using the SCNI gradient operator for the
advection problem may be advantageous for other reasons:

—Avoid expensive direct evaluation of meshless
shape function derivatives.

—May already have the gradient operator `B' if the
problem incorporates physical or artificial (e .g.
Petrov-Galerkin) diffusivity.

—Will be cheaper than Gauss Quadrature.
—May provide better accuracy than Direct Nodal

Integration .
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e von Neumann analysis begins with
spatial discretization.

• Select model equation:
—first-order wave (scalar

advection).

• Spatial discretization:
—Bubnov-Galerkin.
—periodic (or infinite)

domain.

• Plane-wave solution:
—substitute into semi-

discrete form of PDE.
—solve for dispersion .

aU aU aU
+c

xax
	 +cy

at

	

ay

MLT + A(c)U = 0

U(x, y, t) = f(A,x,y,t,k,w)
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ase speed is the projection of the fluid
velocity in the wave direction.

- consider scalar advection:
i+u1T+u2 Ty = 0

- assume solution
T(x, t) = Aexp[a(k,x+k2Y)–awt]

- substitute and solve for w:
w=+k2 u 2 =k ` u

T(x,t) = exp[ak ` (x–ut)]

c =k t u/ k

- For a non-dispersive fluid in a 1-D domain:

c=u1

	

so that

	

~ = ul lc=1
(adapted from Gresho, Taiwan course, 1989)

k` = Lk, k2]

ut = 1 u2~
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group speed is the speed at which
wavepacket energy is transported.

- group speed is defined as : vg = Ok [k`u]

- in 1-D

	

vg =a[kc(k)]lak

	

=vg lc
- consider a short wavelength signal modulating a slowly
varying envelope :

	

,o

u(x,O) = Y aY exp[ayx] kp[akx]

	

~ op

4

-D.5

u y (x, t) = a7 exp[a(y + k)(x — e(k +7)0] -, .o i

5

	

6

	

7
x

moving at phase speed

uY (x, t) = aY exp[ay(x—vg (k)t)]

amplitude ay moving at vg(k)
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erate semi-discrete form of continuous
plane wave solution.

• Continuous plane-wave solution:

U(x, y, t) = exp[ak(x cos(9) + y sin(9)) — awt]

• Discrete plane-wave solution:

U(i+m,;+n) = U(i, j exp [lk (mAx cos(9) + nay cos(9)) — icvt]

i±L ij_

w = c(k,Lx,Ay,9)k
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ming a 1-D domain (or 0 = 0) the phase
and group speeds become:

• Normalized phase and group speeds are:

C

	

—
J a

	

ug
--

gafm — J a gm
~— —

	

7
C Ckfm

	

C

	

C fm
2

nX

+ 2> sin(klAx) Ai,i+1
l=1
n,

+

	

cos(klAx)Mi,i+1
i=l

n r
ga afa /8k = 2AxI l cos(kldx)Ai,i+1

1=1

n
gm — afm /ak = -2Ax1 sin(klAc)Mi,i+1

1=1

where,

	

f

	

l,l

I. Mii
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dies demonstrate favorable dispersion
properties for GI-RKPM relative to FEM.
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ersive character is strongly dependent
on operator integration for consistent mass.

Results for consistent mass (CM), a = 1 .50.
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ed mass formulation indicates reduced
dependence on integration technique.

Results for lumped mass (LM), a = 1 .50.
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CM, SCNI's phase degrades at larger
kernel widths relative to A-GI and DNI.

Results for consistent mass (CM), a = 2 .28.
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LM, A-SCNI phase is identical to other
techniques at large kernel width.

Results for consistent mass (LM), a = 2 .28.
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width impacts consistent and lumped
mass phase behavior differently.

Phase speed results for M-DNI with A-SCNI.
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niform and Non-uniform transient
solutions illustrate dispersion results.

1-D Advection Equation:

U+cU' =0 c=1
Initial condition :

U(x,0)=sin(kx) k = 4ic
Solutions :

~x,t) = sin(k(x —ct))Uexact

Unum (x, t) = sin(k(x — ckt))
Periodic domain:

uniform grid "• • •"""""""'

non-uniform grid
0
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le component, uniform mesh solution
illustrates impact of integration and mass.

Results at t = 1 for discretizations with a = 1 .5.
kdx/it = 0.2
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Ingle component, non-uniform mesh
solution illustrates DNI issues for CM.
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Ingle component, non-uniform mesh
solution illustrates DNI issues for LM.

Lumped mass with a = 1 .5.
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Conclusions

SCNI developed and produces excellent diffusive
properties for diffusion PDE.

• Extending SCNI to advection PDE modifies dispersion
properties relative to A-DNI and A-GI.

• A-SCNI produces dispersion properties similar in accuracy
to those for `fully' integrated gauss quadrature at
significantly reduced cost.

• Lumping the mass, and/or using M-DNI has a much greater
impact on dispersive properties than does using A-SCNI
relative to A-GI.

• A-SCNI provides a stabilizing influence on our non-uniform
grid results relative to A-DNI, most notably in conjunction
with consistent mass .
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