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ABSTRACT

Sensitivity coefficients were analyzed in order to guide the

design of an experiment to estimate the thermal conductivity of
304 stainless steel. The uncertainty on the temperature
measurements was estimated by several means and its impact on

the estimated conductivity is discussed. The estimated thermal
conductivity of 304 stainless steel is consistent with results from
other sources.
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specific heat, J/Kg-K

thermal conductivity, W/m-K
no. of parameters

no. of sensors

no. of measurement times

sum of squares function, see Eq. (6)
temperature, ‘C
scaled sensitivity coefficient, ‘C, see Eq. (1)

maximum temperature, ‘C

minimum temperature, ‘C

time, s
sensitivity matrix

position vector

temperature measurement for sensor i at time j, ‘C
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D-optimality condition, see Eq. (4)

dimensionless D-optimality condition, see Eq. (5)
= Tma - Tmin

data sample rate

thermal diffusivity, m2/s

density, Kg/m3

estimated standard deviation in parameter p, units of p

INTRODUCTION

Thermal systems often incorporate a number of mechanical
joints between individual components. These joints allow
assembly/disassembly, furnish mechanical support, and provide
pathways for redistribution of thermal energy. To predict the
behavior of a thermal system, it is necessary to incorporate
thermal contact phenomena into computational tools. An
accepted modeling approach is to use correlations that provide
contact conductance based on joint characteristics, such as
material pair, surface finishes, surface harnesses, and contact
pressure. These parameters are important because the surface
irregularities deform upon contact and control the actual
interface area.

An experimental apparatus has been designed to develop

contact conductance correlations for metal-to-metal interfaces.
As part of the data reduction procedure, it is necessary to know

the thermal conductivity of the metals on each side of the
contact interface. This thermal conductivity information is often
obtained from either handbooks or separate experiments
designed to measure those values. An unpublished uncertainty

analysis for the steady-state contact conductance experiment



has indicated that the largest contributor is because of the
uncertainty in the thermal conductivity of the metal. Also, a
relative uncertainty of 10% on a handbook conductivity

translates to a larger relative uncertainty in the estimated contact
conductance. Therefore, it is important to reduce the uncertainty
in the conductivity in order to reduce the uncertainty in contact

conductance. In this paper we take an alternative approach in
that we use the same basic hardware used in the contact
conductance experiment to also measure the thermal

conductivity. Since the thermal conductivity is measured on
hardware that is prototypical for the contact conductance
experiment, it is felt that the experimental uncertainty in the
thermal conductivity measurements will be reduced over that
obtained from a separate thermal conductivity experiment.

Description of Contact Conductance Experiment

A cutaway view of the contact conductance experiment is

shown in Fig. 1. The contact interface of interest is that between
the two hollow cylinders, each with an outside diameter of 8.89
cm (3.5 in), wall thickness of 0.508 cm (0.2 in), and length of
6.985 cm (2.75 in). (For the results reported here, a single
continuous cylinder of 13.97 cm (5.5 in) length was used

fl

instead of the split cylinders. This cylinder was machined from
the same billet as the split cylinders.) A flange of 12.7 cm (5.0
in) diameter by 0.635 cm (0.25 in) thickness is present on the

upper and lower cylinder ends. The copper block is composed
of two halves: the (solid) contact plate is 12.7 cm (5.0 in)

diameter by 1.905 cm (0.75 in) thick; the body is 12.7 cm (5.0
in) diameter by 3.848 cm (1.515 in) and has serpentine channels
machined in it to enhance the heat exchange effectiveness for
the fluid circulated through it. The contact plate and body are
brazed together and are referred to collectively as the copper

block.

Time-dependent temperature measurements are provided by
thermocouples mounted in the top and bottom copper blocks
identified in Fig. 1. A single 30-gauge thermocouple (0.254
mm, 0.010 in diameter, Type K) measures the temperature of

each of the copper blocks; this thermocouple is located 4.483
cm (1.765 in) from the copper/stainless steel flange interface (in
the body) and at the bottom of a 6.35 cm (2.25 in) deep radial
hole. Two separate temperature-controlled baths supply fluid to
the top/bottom (OFHC) copper blocks. A simplified cross
section of the heating/cooling blocks and stainless steel cylinder

is shown in Fig. 2; for the experimental results presented here, a
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Figure 1. Cutaway view of contact conduc-
tance experiment

Figure 2. Cross section of experimental apparatus



,.

continuous cylinder was used as opposed to the two piece
cylinder shown in Fig. 2.

Thermocouples are mounted in the stainless steel cylinder
walls at 14 axial stations with a uniform spacing of 0.953 cm
(0.375 in). Station 1 is near the top of the cylinder and is located
0.795 cm(0.313in) from theinside face of the flange. Station
14 is located at a mirror image position near the bottom flange.

Stations 7 and 8 are located at +0.475 cm (+0.187 in) from the x
= O position (axial center line), respectively. At each axial
station along the stainless steel cylinder, there are

thermocouples at four angular stations, each 90 degrees apart
for a total of 56 thermocouples mounted in the cylinder wall.
The thermocouples are arranged in four columns: two columns
of Type K and two columns of Type T, both of 30-gage wire
(0.254 mm or 0.010 in diameter).

The thermocouples were installed by drilling 1.17 mm
(0.0461 in) diameter by 2.54 mm (O.1 in) deep holes in the
cylinder walls. The thermocouples were formed by stripping
insulation from single-strand wire, welding the junction, and
dipping the junction in a eutectic mix of indiumltin. The

eutectic was also placed in the holes, and it remains liquid and
ensures good contact between the thermoelectric elements and

the stainless steel. The leads were wrapped around the outside
diameter of the cylinder for one turn and held down with
KaptonTM tape so as to minimize conduction losses along the
lead wires.

The vacuum system consists of a bell jar vacuum chamber, a

base plate with feed-through ports, and a complete vacuum
pumping system with controls and gaging. The nominal
dimensions of the glass bell jar vacuum chamber are 45.7 cm by
76.2 cm by 0.826 cm (18 in by 30 in by 0.325 in) wall thickness.
The system is composed of a high-speed roughing pump and a

four-stage diffusion pump capable of maintaining 10-7 Torr.

The data was acquired using the PC-based LabViewTM with a
16 bit A-D system; the sample interval was one second.

EXPERIMENT DESIGN ISSUES

The temperature of the top and bottom copper blocks can be
independently controlled through their own individual fluid
baths; this allows considerable flexibility in the temperature
history that can be imposed. Blackwell and Dowding (1999)
explored optimum experiment design issues for the estimation

of thermal conductivity from temperature data of this type. They
considered two different boundary condition scenarios, termed
“symmetric and “anti-symmetric” because of the boundary
conditions imposed on the copper blocks. The “symmetric”
boundary condition increased the temperature of both the top
and bottom copper block by an amount AT, as rapidly as the
temperature baths would allow. The “anti-symmetric” boundary
condition increased the top Cu block temperature by AT/2,
whereas the lower block temperature was decreased by ATfl.
The temperature profile for the “symmetric” scenario is

symmetrical about the midplane. Even if a midplane contacting
surface was present, it would not impact the thermal

conductivity estimation because of the presence of this
symmetry or adiabatic surface. Furthermore, it was found that
the symmetric scenario will have a smaller variance in the
estimated conductivity than the anti-symmetric scenario. As
such all results presented here will be for the “symmetric”
boundary conditions.

The thermocouple results for a run at a pressure of roughly

4x10-5 Torr are shown in Fig. 3. This pressure is sufficiently low
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Figure 3. Experimental temperature results for Run
042999.

to eliminate convection, and the temperatures are sufficiently
low that radiation is not significant. While the top and bottom

copper block temperatures are from single thermocouple
measurements, the Station 1-14 results are each the average of
four thermocouples at the same axial station and equally spaced
around the circumference of the cylinder. Statistics on these
temperature measurements will be discussed in a subsequent

section. Because of the finite capacity of the temperature baths,
the change in temperature of the top and bottom copper blocks
only approximates a step change boundary condition. Also, note
that even though the top and bottom blocks were fed from the
same temperature bath, their temperatures were not the same
during the rapid transient. At early times the top block

temperature may be as much as 4°C above the bottom block
temperature. It is speculated that the reason for this discrepancy
is that the piping lengths supplying the top and bottom Cu

blocks are different. Had the top and bottom block temperature
histories been the same, then pairs of thermocouples (Station 1
and Station 14, etc.) should also read the same. The farther the
thermocouples are from the heated ends, the more closely the

thermocouple pairs agree.

During the cool down phase, the thermocouple pairs on the



stainless steel cylinder cross over. The data reduction procedure
to be discussed below will account for the fact that the top and
bottom boundary conditions were different; longitudinal
symmetry was not assumed.

The optimal design of experiments studies sensitivity

coefficients in order to make decisions on quantities such as

experiment duration, sensor locations, sample rate, etc. In this
instance sensitivity coefficients are defined as partial derivatives

of field variables (temperature in this case) with respect to
parameters of interest (conductivity in this case). We have found
it useful to utilize scaled sensitivity coefficients. For our
experiments the scaled thermal conductivity sensitivity

coefficient of interest is defined as

Tk(t, 1, k) = kg. (1)

Note that the scaled sensitivity coefficient is a field variable just

like temperature, and it has the units of temperature. The scaling
of the sensitivity coefficient is important in that it allows
sensitivity coetlicients to be directly compared to a

characteristic temperature rise of the experiment. For this
experiment the characteristic temperature rise is the rise from its
initial value. We utilized software designed specifically to
compute both temperature and sensitivity coefficient fields.
Details of this methodology can be found in Blackwell et al.
(1999) and Dowding et al. (1999). This software utilizes a

Control Volume Finite Element Method to solve the energy
equation and also the derived sensitivity partial differential
equations. It is felt that the sensitivity equation method is more
accurate than finite difference determination of sensitivity
coefficients and requires less user intervention to determine
appropriate finite difference step sizes.

The computation of the temperature and sensitivity coefficient
fields requires a computational mesh be developed for the
experiment. If the copper blocks are included in the

computational model, then the contact conductance between the
top/bottom copper blocks and the stainless steel flanges must be
included in this model. Two-dimensional simulations of the

experiment were performed in which a range of copper/stainless
steel contact conductance was assumed. From these
calculations it was determined that the temperature field through
the wall thickness at Stations 1 and 14 was uniform. This allows
the geometrical extent of the model to be reduced to include
only that portion of the cylinder between Stations 1 and 14 and
eliminates the need for contact conductance at the copper/
stainless steel interface. In fact, this says that the model is really
one-dimensional as the boundary conditions are uniform at the
Stations 1 and 14 cross sections. However, the data from this
experiment was reduced using a two-dimensional axisymmetric
computational model, since the software for computing the
sensitivity coefficients did not have a 1-D model.

Sensitivity coefficients have been calculated for the 14

thermocouple stations. The results for Stations 1-7 are presented
in Fig. 4 along with the temperature history at Station 1. Note

Figure 4. Scaled thermal conductivity sensitivity
coefficients (left scale) and Station 1 temperature
history (right scale).

that the sensitivity coefficient at Station 1 is zero; this is because
the temperature at a specified temperature boundary condition is
independent of the thermal conductivity. Station 7 has the
largest sensitivity coefficient, indicating that it contributes the

most information about the thermal conductivity. Since the
thermocouple locations near the midplane of the experiment
have the largest sensitivity coefficients, one might ask why the
thermocouples were not located closer to the midplane. The
original intent of the experiment was to measure the contact
conductance using the steady state temperature profile and
conductivity to estimate the heat flux. For this situation a
uniform placement of thermocouples was thought to be better.
The thermocouple locations were already specified before the
conductivity estimation experiment was conceived. The
sensitivity coefficient results for Stations 8-14 are very similar
to those for Stations 1-7 and so are not shown.

The duration of the heating phase and cooling phase of Run

042999 (Fig. 3) was chosen based on engineering judgement
and a visual inspection of the sensitivity coefficients. A more
formal approach would involve optimal experiment design
techniques. The D-optimality condition discussed in Beck and
Arnold (1977) was used in subsequent analysis of the

experiment design. This condition involves maximizing the
determinant of the matrix

A = Det(XTX), (2)

where X is the N$. Nt by NP sensitivity matrix, the number of

sensors is N~, the number of times is Nr, and the number of
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parameters is Np. In this particular application, we are only

estimating a single parameter, thermal conductivity of the
stainless steel; hence NP = 1. There are 14 sensors on the

stainless steel cylinder, but since Stations 1 and 14 will be used
as boundary conditions, there are only 12 axial stations

contributing parameter estimation information; the sensitivity

coefficients are zero at the specified temperature boundary
conditions. The number of time measurements will be treated as
variable through the relationship

t = N(At , (3)

where t is the experiment duration, and At is the data sample
rate; for all the results presented here, At =1 s. For this simple

case of a single parameter, the optimality condition reduces to

[1“ ‘[ dT 2
A=~~—

,Elj=l akli,j

(4)

One could increase A by adding sensors or taking more

measurements as long as d T/~/c is nonzero. Furthermore,

because ZIT/dk is typically related to the temperature range, a

larger temperature variation causes A to increase. To eliminate

these dependencies, a normalized version of the optimality
condition was used in this study and is defined to be

N, N, aT 2

A+ =
1

[ 1
zzk~ , (5)

N,Nt( Tmax – Tmin)2i = 1j= I i,j

where (Tmax, Tmin) is the (maximum, minimum) temperature

over time and sensor location. The quantity A+ can be viewed

as an information content per data sample, and we want to
choose the heating and cooling durations that maximize this

quantity. The time dependence of A+ comes through the
implicitdependence of N1 on time, Eq. (3).

Note the presence of the scaled thermal conductivity
sensitivity coefficients in Eq. (5). These scaled sensitivity
coefficients are precisely those shown in Fig. 4. When the
cooling phase is initiated (by means of a temperature boundary
condition), there is no sudden increase or decrease in sensitivity
coefficients as there is when experiments are driven with a heat
flux boundary condition, and the heat flux is turned off.

Consequently, the cooling phase does not add much additional
information in the situation being studied here.

The D-optimality condition defined in Eq. (5) for Run 042999
is presented in Fig. 5. The heating duration for this experiment
was 644 s; beginning at this time cooling fluid was circulated

through the top and bottom copper blocks. The cooling duration
can be treated as a variable to be selected based on the time at
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Figure 5. D-optimality condition as a function of
time.

though the experiment was run in excess of 1000s, the majority
of the information about thermal conductivity is contained in
the first 756 s of the experiment. The data was reduced using a
run duration of 1000s.

THERMAL CONDUCTIVITY ESTIMATION

The thermal conductivity is estimated from the experimental
temperatures in Fig. 3 such that the least square error between
the computational model of the experiment and the

experimental temperatures is minimized. This sum of squares
function is given by

N, N,

~ = Z Z (Tij-Yij)2.
i=lj=l

(6)

The iterative solution to this minimization problem was
accomplished through the DAKOTA (1999) software, which
allows one to connect stand-alone thermal analysis software
with stand-alone optimization software. The communication
between the various software is through external data files. This
approach allows the thermal analysis software and optimization
software to develop independent of each other. Additional
details on this approach have been presented in Blackwell and
Eldred (1997) and Dowding and Blackwell ( 1998).

The computational model consisted of the walls of the
stainless steel cylinder. The end boundary conditions were the
experimentally measured temperatures at Stations 1 and 14. The
boundary conditions on the side walls of the cylinder were
adiabatic. The estimated thermal conductivity was 14.34 W/m-
K; this result compares favorably with other measurements

which A+ in Fig. 5 is a maximum; this time is 756 s. Even



given in Table 1; the other measurements were linearly

‘Table 1: Comparison of thermal conductivity of 304 Stain-
less Stael with other results. Units are W/m-K and are valid
for 31 “C; uncertainty bound is fio

This Work Taylor, et al. (1997) Incropera and De Witt (1990)

14.34*0.58 14.74* 1.5 14.97

interpolated at a temperature of 31“C, the average temperature
of Run 042999. The uncertainty statement contained in Taylor,

et al. (1997) stated that the conductivity was accurate to *5Y0. It
is not known if this uncertainty bound was 10 or 2cT; it was

assumed to be 1ts. The details of the uncertain y analysis for this
work are presented below.

Since time-dependent temperature data is used in the
parameter estimation process, the computational model requires
both thermal conductivity and volumetric heat capacity. The use
of temperature boundary conditions to drive the model
precluded the possibility of estimating both conductivity and
volumetric heat capacity from the temperature measurements
presented here. The conductivity estimation process was

performed by assuming a value for the volumetric heat capacity
and then minimizing the least square error. If the volumetric
heat capacity is arbitrarily changed, then the resulting

conductivity estimate will also change such that the ratio
(thermal diffusivity) is a constant. Consequently, the parameter

estimation process really estimates the thermal diffusivity. The
density and heat capacity values used in the data reduction

process were p = 7916*18 Kg/m3 (this work, la) and c=
497*1O J/Kg-K (Taylor et al., 1997; given as 290 accuracy,
assumed to be 1o).

Beck and Arnold (1977) indicate that for additive,

uncorrelated errors with zero mean, the standard deviation in the
estimated thermal diffusivity is related to the standard deviation
in the temperature measurements through

(7)

This relationship points out why maximizing A is important in
terms of minimizing the errors in the estimated conductivity.
The dimensional and dimensionless A are related through Eq.
(4) and Eq. (5) and can be written as

N, NtAT2
A= A+. (8)

cx2

The variance and standard deviation in the estimated
conductivity can be written as

The issue we are faced with now is how to estimate 6T. This

will be explored in more detail in the following section.

ESTIMATES OF STANDARD DEVIATION IN TEMPERA-
TURE MEASUREMENTS

It is important to study the temperature residuals

corresponding to the estimated thermal diffusivity. These
residuals are an indicator of the standard deviation in

temperature and are defined as the difference between the
experiment and the model temperatures. Residuals for Run
042999 are presented in Fig. 6. The standard deviation in the
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Figure 6. Temperature residuals for Run 042999.

temperature can be estimated from

(lo)

and was found to be 0.049”C. Visually the band of *2dT’ in Fig.

6 appears to capture 95% of the residuals. Ideally the residuals
should be randomly distributed around zero. Clearly the
residuals in Fig. 6 are not random, suggesting that there may be
inconsistencies between the measurements and the
computational model. Most likely this pattern is because of the
model not including all the physics present in the experiment.
However, note the small magnitude of the residuals, indicating

good agreement between the model and data.

At steady state, uncertainty in the temperature measurement
is because of random noise from the data acquisition system and
fixed bias from the data acquisition amplifiers or variations in

thermocouple alloy composition. To assess the noise level and
simultaneously remove the bias, the instrumented cylinder was
subjected to long-term soaking at constant temperature levels in
a temperature-controlled oven. A thermistor with a calibration



traceable to NIST was installed on the cylinder, and its
temperature was used to develop a thermocouple-by-
thermocouple correction curve for bias errors. Because the
thermocouples were installed on the parts and connected to the

data acquisition system as in the actual experiment, the
correction represents an end-to-end calibration of the

temperature measurement system. Bias corrections were on the
order of 0.5°C and varied with thermocouple. The remaining
error (assumed to be random noise) amounted to roughly

6~ +0. 10°C over all the thermocouples.

For dynamic temperature measurements, such as reported
here, an additional source of uncertainty is the installation of the
thermocouple in the cylinder wall. First, the thermocouple,

being of finite size and installed in a metal part with a
temperature gradient, leads to ambiguities in interpreting its
reading. Further, nonperfect contact between the thermocouple
and the well in which it was installed coupled with the
difference in thermocouple wire material properties leads to a
time lag in the reading. Thus the uncertainty in the dynamic

situation is dependant on installation details, the local time rate
of change of temperature, and the local thermal gradient in the
cylinder. To quantify the contribution of these effects to
uncertainty, the time response of the four circumferential
thermocouples at each axial station were compared by
calculating the standard deviation about the station mean at each
data time. These results are shown in Figure 7 for axial Stations
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Figure 7. Standard deviation in four circumferential
stations for axial stations 1-7

1-7; similar results were obtained for axial Stations 8-14. It was
found that for axial stations closest to the boundary (1 -3), which
underwent relatively high rates of change in high-gradient

conditions, the spatial standard deviation was as high as 0.5°C
(Station 1) to about 0.2°C (Station 3). For the other stations the
spatial standard deviation was at or below O.10“C, when steady

state was approached. Note that the sensors with the largest
errors (Stations 1-3 and 12- 14) have the smallest thermal
conductivity sensitivity coefficient (see Fig. 4).

There is a strong correlation between temperature rise rate,

temperature gradient, and circumferential standard deviation.
The temperature rise rate and the temperature gradient for

Station 1 were computed using the experimental data and finite
differences, and these results are given in Fig. 8. The peak
spatial temperature gradient lags the peak temperature rise rate.
The peak in the standard deviation curve (taken from Fig. 7 for
Station 1) occurs at a time between when the maximum time
and spatial temperature gradients occur. The maximum
temperature gradient at Station 1 is approximately 0.28 °C/mm.
For a thermocouple well of 1.17 mm diameter, the position of
the 0.254 mm (0.01 O in) diameter wire pair could vary by as
much as +0.44 mm (N.017 in); this assumes that the two wires
are side by side in a direction perpendicular to the axis of the

cylinder. Using the above (maximum) temperature gradient of
0.28°C/mm and the positional uncertainty of the center line of
the thermocouple wire, the uncertainty in temperature is

approximately +0. 12°C; this result is consistent with the near
steady-state results presented in Figure 7. This result does not
consider that the presence of the thermocouple alters the
temperature one is trying to measure.

In summary, the three temperature uncertainty estimates vary
by an order of magnitude and lie in the approximate range
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Figure 8. Temperature gradient, temperature rise
rate, and circumferential standard deviation for
axial Station 1.



0.05< 6T <0.50 C. These results are summarized in Table 2.

Table 2: Estimated standard deviation in temperature using
various methods

method *16T, ‘c
I

residual 0.049
,

steady state 0.10

I maximum circumferential average I 0.5 I

UNCERTAINTY IN ESTIMATED THERMAL CONDUC-
TIVITY

To account for the uncertainty in the estimated thermal

conductivity, we focus on the relationship between the thermal
conductivity, thermal diffusivity, density, and specific heat

k=apc. (11)

The uncertainty in the conductivity is related to the uncertainty

in the other parameters through

(12)

The estimated uncertainty in the thermal diffusivity can be

obtained from Eq. (9), yielding

(13)

Utilizing the most pessimistic estimate for the standard
deviation in temperature (0.5°C) and the other parameters for

this experiment, Eq. (13) yields

i3k 2

()T = 5.8x10-7 +5.2x10-G +4.0x10-4 . (14)

Clearly the uncertainty in the specific heat dominates the
uncertainty in the thermal conductivity. The final estimated
thermal conductivity is

k = 14.34* 0.58 W/m-K ( + 2cJ hounds) . (15)

Any further reductions in uncertainty in thermal conductivity
estimate must be accompanied by a reduction in the (2%)

uncertainty in the specific heat.

SUMMARY

An experiment to measure contact conductance between

axially and tangentially loaded hollow cylinders has been
described. In order to minimize the uncertainty in contact

conductance because of uncertainty in thermal conductivity, a
companion experiment was developed to measure thermal

conductivity using prototypical hardware of the contact
conductance experiment. The experimental configuration was

axial heat conduction in the walls of a hollow cylinder.
Optimum experiment design issues were discussed. Sensitivity
coefficients and the D-optimality condition were computed. The
estimated thermal conductivity at 31 ‘C was 14.34 W/m-K,
which compares favorably with other estimates. An uncertainty

analysis on the temperature measurements was performed using
three different methods with the results given in Table 2. The
uncertainty in the specific heat is the dominant factor in the
conductivity uncertainty. In order to further reduce the

uncertainty in the contact conductance that is to be measured in
future experiments, the uncertainty in the estimated heat

capacity will have to be reduced.
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