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Abstract

The Reproducing Kernel Particle Method (RKPM) is a discretization technique
partial differential equations that uses the method of weighted residuals, classi-
reproducing kernel theory and modified kernels to produce either “mesh-free”
“mesh-full” methods. Although RKPM has many appealing attributes, the

method is new, and its numerical performance is just beginning to be quantified.
In order to address the numerical performance of RKPM, von Neumann analysis is
performed for semi-discretizations of three model one-dimensional PDEs. The von
Neumann analyses results are used to examine the global and asymptotic behavior
of the semi-discretizations.

The model PDEs considered for this analysis include the parabolic and hyper-
bolic (first and second-order wave) equations. Numerical diffusivity for the former
and phase speed for the later are presented over the range of discrete wavenumbers
and in an asymptotic sense as the particle spacing tends to zero. Group speed is
also presented for the hyperbolic problems. Excellent diffusive and dispersive char-
acteristics are observed when a consistent mass matrix formulation is used with the
proper choice of refinement parameter. In contrast, the row-sum lumped mass ma-
trix formulation severely degraded performance. The asymptotic analysis indicates
that very good rates of convergence are possible when the consistent mass matrix
formulation is used with an appropriate choice of refinement parameter.

Words: reproducing kernel particle methods, meshless, discretization errors

Introduction

The accurate simulation of diffusion, wave propagation or advection processes using dis-

crete numerical schemes hinges upon having a clear understanding of the constraining
numerical errors, the grid resolution to minimize these errors, and sufficient computa-

tional resources to effect solutions with the requisite grid scale. Examples of this may
be seen when attempting to simulate solid-liquid phase change or ablation, model wave

propagation in an acoustic medium, or compute turbulent flow fields via direct numer-
ical simulation (DNS) or large eddy simulation (LES). In general, the computation of

diffusion and wave propagation problems is limited by the wavelength that the grid can

accurately represent. For example, controlling the dispersive errors to within 5?70 for fi-
nite difference or lumped-mass finite element semi-discretizations of the first-order wave

equation requires approximate ely 11 – 12 grid points per wavelength (see Table 2.6.2 in
pj).

An alternative to traditional grid-based approaches is the class of methods based on

moving least-squares, reproducing kernels, and partitions of unity. An overview of the
development of this class of numerical methods is presented by Belytschko, et al. [1].
The methods based upon reproducing kernels are of interest here because they promise
to deliver enhanced numerical performance on a broad range of physical problems and
provide a framework for multi-scale analyses.
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Liu and his co-workers have been developing reproducing kernel particle methods

(RKPM) for a number of years and have demonstrated applications ranging from struc-
tural acoustics to large deformation mechanics problems [14, 15, 16, 19]. In addition,
Liu, et al. [13, 21] have combined reproducing kernel ideas with multi-resolution anal-
ysis using pre-wavelets, permitting the decomposition of discrete solutions into multiple

scales. The application of RKPM to structural dynamics has been demonstrated by Liu,

et al. [18] in addition to showing that the reproducing kernel interpolation functions

satisfy consistency conditions. Uras, et al. [23] have applied RKPM to acoustics prob-
lems demonstrating that the dilation parameter in the window function may be used to

perform the RKPM analog of h-p adaptivity.

In a series of papers by Liu and Li [10, 12, 20] moving least-squares reproducing kernel
methods are developed beginning with the basic formulation and continuing through a
Fourier analysis and the incorporation of wavelet packets. The possibility for RKPM to
deliver synchronized rates of convergence for the discrete functions and their derivatives
has also been explored by Li and Liu [11]. The application of RKPM for nearly incom-

pressible, hyper-elastic solids was considered by Chen, et al. [3], while the treatment of
large deformation problems has been explored by Liu and his colleagues [9, 17]. The en-

richment of finite element computations with RKPM has also been addressed, permitting
local regions of the computational domain to be treated with RKPM while the global
problem is treated with a standard finite element formulation [4, 22].

In general, the application of discrete methods to parabolic and hyperbolic differential

equations results in errors that distort the discrete solution relative to the true physics.
For example, the discretization of a parabolic PDE results in an effective cliffusivity that
is a function of wavelength where the physical diffusivity is wavelength independent. In

the context of heat conduction, the diffusivity is a measure of the ability of a medium
to conduct relative to its ability to store thermal energy. An initial temperature distri-

bution imposed in a diffusive medium will tend to diffuse at a rate set by its wavelength

independent diffusivity. The effect of discretization is to make the diffusivity a function

of the wavelength, modifying the diffusion rates of the individual Fourier components
relative to the their physical rates, resulting in an error in the predicted time-dependent

thermal solution.

For hyperbolic problems, the application of discrete methods results in solutions that
are dispersive even though the physical phenomena is non-dispersive. Dispersion errors

are typically characterized by the differences between the apparent numerical phase and
group speed of waves and their true, or exact, counterparts. For linear acoustics, phase

speed is the speed at which individual waves propagate while group speed is the speed

of the energy associated with a wave packet [7, 24, 25].

The study of diffusive and dispersive errors associated with discrete solutions is not
new and has been used by numerous researchers to characterize the performance of

numerical methods in the past. A brief review of the errors associated with hyperbolic
problems is presented by Voth and Christon [5]. Studies of diffusive errors associated

with the semi-discretizations of parabolic problems have been performed by Gresho et
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al. [6, 7], and Vichnevetsky et al. [24, 25, 26].
Although the application of RKPM has been demonstrated on a broad class of prob-

lems, itsnumerical performance has not been fully investigated. In the discussion that

follows, diffusion, dispersion and rates of convergence for several RKPM formulations

of the parabolic and hyperbolic model PDEs are investigated. The discussion begins

with an overview of the von Neumann and asymptotic error analysis and a summary of
the formulae for computing the effective diffusivities, phase and group speed and rate of

convergence for RKPM semi-discretizations of the model equations. In $ 3, the results
of the von Neumann analyses are presented. Here, effective diffusivity and phase and
group speed for consistent, lumped, and higher-order mass matrices are presented. Also

investigated are the effect of integration rule and kernel function width. The discussion
of the von Neumann results is followed by a presentation of the accuracy-in-the-small.
Finally, the results are summarized and conclusions drawn.

2 Formulation

This section begins with a brief overview of the RKPM method. A detailed presentation
of RKPM is beyond the scope of this paper, and the reader is directed to the literature
for details concerning the method [10, 11, 15, 16]. The formulae required for computing

the normalized effective (numerical) diffusivity, phase speed and group speed follow the
overview.

2.1 Reproducing Kernel Particle Formulation

For the sake of clarity, the following overview is limited to one spatial dimension with

uniform particle spacing although the formulation and analysis may be extended to higher
dimensions with irregular particle distributions [3, 15, 16]. The RKPM formulation begins
with the notion of a continuous kernel approximation of a function, U on a domain Q,

@a(4 = @)@7~-O&, (1)

where @ is the kernel function, a is the dilation parameter that defines the width of the
function and UR” is a continuous approximation to U at some scale defined by a [15, 19].

In order to address discrete problems, numerical quadrature (i.e., trapezoidal or particle
integration) is used to evaluate Eq. (1) as

(2)

where n is the total number of particles in Q, Ua is the discrete analog of UR~a, Axa is
the variational volume and dz the coefficient associated with particle z [15]. In general,
dz is different from the value of the function at particle z because the R,KPM basis is
non-nodal (i.e., it does not posses the Kronecker-delta property).
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One of the most commonly used kernel functions is the cubic spline. In one-dimension,
the cubic spline kernel function is

{

[ 1& 1–;2+ $23 2<1

(pa(z) = & [2 - .]3 1<2 <2,

0 Z>2

(3)

where .z = lx — xi I/(rAx), xi is the position of particle z and r is the refinement parameter
[1, 15, 16]. On a grid of uniformly spaced particles, r is related to the dilation parameter,

a, as r = a/Ax. Hence, as with the dilation parameter, the refinement parameter permits

dilation of the kernel function, and subsequently, its domain of influence. In the remaining
discussion, the superscript a is omitted for conciseness.

In general, Eq. (2) will not exactly reproduce an arbitrary polynomial. The accurate
reproduction of polynomials to degree p is guaranteed by introducing a modified kernel
function,

(4)
k=O

where ~k(x) is a set of correction functions that vary within the domain Q [15, 16]. The
modified kernel function replaces p in Eq. (2) yielding

U(X) = ~ di~($ – Xi)AXi. (5)
2=1

The correction functions are determined by substituting Eq. (4) into Eq. (5) and
requiring that the resulting kernel approximation reproduce polynomials to the desired

degree. For linear consistency, the following constraints are required.

5 [Do(z)+81(Z) (x - ~i)]W(X - Z~)AZi= 1 and, (6)
Znl

n

x [PO(X)‘Bl(x) (x - xi)] P(X - Xi)XiAXi = X.
(7)

2=1

From these equations, Do(x) and PI(z) may be calculated in a point-wise fashion in the
domain.

In the reproducing kernel particle method, shape functions, Ni (x), arise by considering
Eq. (5) to be an expansion in terms of Ni (z) where

These “shape functions” may be used directly in a Bubnov-Galerkin procedure to obtain
the weak form of the model PDEs yielding mass, stiffness and advection matrices.

In the formulation of the semi-discrete equations, the spatial derivatives of Ni (x) are

required. Calculation of these derivatives requires the computation of the derivatives of
~k(x) as well. Although the calculation of these derivatives is rather straight forward,
the algebra required is significant. For this reason, the details are omitted here, and the
reader may wish to consult the work of Liu, et al. [15, 16]
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2.2 von Neumann Analysis

With the RKPM formulation outlined, the weak forms of three model partial differential

equations (two hyperbolic and one parabolic) are presented along with a description of
the Fourier analysis. For generality, the numerical dispersion and diffusion relations are

generated for the the two-dimensional model equations from which the one-dimensional

counterparts are obtained.

To begin, the two-dimensional first-order wave, second-order wave and parabolic par-

tial differential equations are, in Cartesian coordinates,

au 13u NJ=o
7-+C. — —

8X “wy ‘

and,

(9)

(lo)

(11)

Here t is time, U is the dependent variable, c is the wave velocity, Cz = c cos(0) and
Cy = c sin(0) are the advection velocity components and a is the physical diffusivity.

The semi-discrete forms of Eq.s (9)-(1 1) are required for the following analysis. The
details for obtaining the Bubnov-Galerkin weak form of these equations are well known

[8], and are not repeated here. The semi-discrete forms of the first-order wave, second-
order wave and parabolic equations are,

Md+A(c)d=O, (12)

Md+K(c)d=O and, (13)

Md+K(a)d=O, (14)

where A is the advection operator, K is the stiffness matrix, and d is the vector of
unknown coefficients. In the analysis that follows, the generalized mass matrix is used,

M = f?Mc+(l –@M~, (15)

where Mc and Ml are the consistent and row-sum-lumped mass matrices respectively,

and O < ,6 < 1 is the lumping parameter.
It should be noted that some form of numerical quadrature is required for the eval-

uation of A , K and M above. This integration may be performed by placing a grid of

quadrature points overlaying the particle points and using Gaussian quadrature. Alter-

natively, the particle points can be used as the quadrature points with the appropriate
weight being the variational volume associated with the particle (trapezoidal or particle
integration). Here, both integration techniques and their effects on the discretization
errors are considered.
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Proceeding with the Fourier analysis, a plane wave solution is placed on an infinite

span (alternatively, on a finite domain with periodic boundary conditions) in order to

compare the exact and semi-discrete solutions. It can be shown that the particle values,

U, satisfy the same evolution equations as the coefficients, d, when a periodic domain
and symmetric window functions are used [25]. Thus, Eq. s (12)–(14) may be rewritten

in terms of U for the purposes of this analysis. In this way, the plane wave solution to

the hyperbolic Eq.s (9) and (10) may be expressed as,

U(Z, y, t) = Aexp[k(x COS(0) + ysin((l)) – uJt], (16)

where A is the amplitude, k is the wave number, w is the circular frequency, O is the

propagation direction measured from the x-axis, and L = @ [2, 6, 25].
The solution to the parabolic equation, Eq. (11), is given as

U(z, y, t) = Aexp[~k(zcos(0) + ysin(~)) – ak2t]. (17)

Remark

The use of the term “von Neumann” analysis for the parabolic partial differ-

ential equation may be misleading because the equation does not propagate
waves as do the hyperbolic equations (although the authors are aware of hy-
perbolic theory for heat conduction). Instead, the interpretation relies on the

fact that while the physical diffusivity is independent of wavelength, the semi-

discretization’s effective diffusivity is a function of A, i.e., @ = E(A). Thus,
the analog to dispersion error for the hyperbolic equations is the observation
that the wavelength dependent diffusivity leads to errors in the overall rate
of diffusion.

Now, consider a domain with particles equally spaced at intervals of Ax and Ag on

a Cartesian grid. Hence, any particle (i + m, j + n) at coordinates (xi+~l Yj+n) maybe

located relative any other particle (i, j) as zi+~ = Zi + rruk and yj+. = gj + nAy. With

the particle spacing defined, the periodic solution to the semi-discrete hyperbolic and

parabolic equations are,

Uz+m,j+. = U2,jexp[dc(mAx cos O + nAy sin 0) – ~Dt] and, (18)

Ui+m,j+. = Ui,j exp[ik(mAx cos 0 + nAy sin 0) – @k2t], (19)

respectively. Here, U2,j = A exp[~k(~i cos O + yj sin O)] and D and m are the effective

(numerical) circular frequency and diffusivity respectively.

Given an arbitrarily wide kernel function,’ the semi-discrete forms of the first- and
second-order wave and parabolic equations may be rewritten for particle (i, j) as

5 k {“(i,j),(i+t,j+m) ui+l,j+m + ‘(i,j),(i+l,j+m) ui+l,j+m} = (), (20)
1=–n m=–n
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1=–n m=–n

i ii [“(~)j),(~+~,j+~)u2+t)j+m + ‘(i,j),(i+l,j+m) ~i+t,j+m] = 0, (22)
1=–n m=–n

where ~(i,j),(i+l,j+m), ~(i,j),(i+l,j+m) and A(i,j),(i+t,j+m) are the mass, stiffness and advection
matrix entries on the row associated with particle (z, j) and the column associated with

particle (i + 1,j + m). Here, the summation is over the range of all particles under the
support of the kernel function at particle (i, j)

Computation of the normalized phase and group speed for the semi-discrete hyperbolic
equations continues by substituting Eq. (18) and its temporal derivatives into Eq.s (20)

and (21) yielding,

+ s s [A(i,j),(i+t,j+m) ew(~~(lA~ COS(@)+ ~Ag sin(o)))] = O
1=–n m=–n

(23)

‘a S 5 [“(L~)J~+~)~+m)‘xp(Lk(zAzCoS(o)+ ‘AY ‘in(o)))]
1=–n m=–n

+ 5 5 lK(~J)(~+L~+m)‘xp(Lk(zAzCoS(o)+ ‘AY ‘in(o)))]= 0 (24)
1=–n m=–n

for the first- and second-order equations respectively. The normalized phase speed is
obtained by rearranging Eq. s (23) and (24) and solving for the effective circular frequency,

D. Using the fact that, for a non-dispersive medium, c = w/k, the normalized phase speed

associated with either semi-discrete hyperbolic equation, defined by @ = z/c, is

for the first-order wave equation and

J1 Xr=-nX~=-n[K(2)j),(2+l,j+m)=w(WzA~ CoS(o)+ ‘AY ‘in(o)))]

“ =~ XP=-. ZR=.-n[M(2,j),(2+l,j+m) ew(~~(zA~ cos(~)+ mAY sin(~)))l
(26)

for the second-order wave equation where z is the discrete phase speed.
The appropriate error measure that arises for the parabolic PDE is the normalized

effective diffusivity, ~/a. Substituting Eq. (19) into (22) yields,

–ak’ ~ & [M(i,j),(i+t,j+~)ew(WzA~ COS(~) + mAY sXO))l
1=–n m=–n

+ k h [~(z,jMz+Lj+~)exP(~k(~A~ COS(@ + mAy sin(~)))] = O.
1=–n m=–n

(27)
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Solving Eq. (27) for ~ and dividing through by a yields the desired expression for
normalized effective diffusivity,

The one-dimensional numerical dispersion and diffusion relations may be obtained
from the two-dimensional results by setting 19= O. In this way, the phase speed for the

first and second-order wave semi-discretizations are,

$,=A
Ckfm ‘

(29)

while the ratio of the effective to physical diffusivity for the parabolic equation is,

1 fk
~/~ = ——,

Cw fm
(31)

where
n

fa = Ai,i + 2 ~ sin(~lAz)Ai,i+~, (32)
1=1

n.

fm = Mi,i + 2 ~ COS(kZAX)Mi,i+/ and, (33)
1=1

fk = ~i,i + 2: COS(khZ)Ki,i+~. (34)
1=1

and a symmetric kernel has been assumed so that the Euler identities (e.g. 2COS(Z) =
exp(w) + ~exp(—~z))) may be used to simplify the expressions.

In one dimension, the normalized group speed is defined as < = v9/c, where V9 =

&J/dk. Using Eq. (29) and (30), the normalized group speed in one dimension is

cl = gafm – fa!lm and, (35)
c f:

(2= & gkfm - fkgm

2cfi f;.. .

for the first and second-order wave equations respectively. Here,

n

(36)

ga = 8fa/8~ = 2Ax ~ 1cos(klAx)A~,~+l (37)
1=1
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n

gm = 8fm/8tk = –2Ax ~ 1sh(klAx)A4i,i+l and, (38)
k=l

n

gk = ~fk/d~ n –2Ax ~ 1sin(klAx)Kz,i+l. (39)
1=1

Unless otherwise noted, the normalized phase speed and group speed defined above are
referred to simply as phase speed and group speed in the remaining text.

Finally, note that there have been no restrictions (with the exception of symmetry)
placed on the form or type of shape functions used to obtain the mass, stiffness or

advection operators. Thus, Eq. (25) through (36) are valid

that use either the RKPM shape functions or the usual finite

Remark

for Galerkin formulations

element shape functions.

Note that when the diffusion term is added to the first-order wave (advec-

tion) equation (i.e. the linear advection-diffusion equation is considered) the
analytic solution (for the case of periodic boundary conditions) is simply the
product of those for the pure advection and pure diffusion equations. As a re-
sult, the eigenvalue of the advection-diffusion operator is a linear combination
of those for pure advection and pure diffusion and thus may be considered
separately, as is done here (see pages 187-188 in [7]).

2.3 Asymptotic Analysis of von Neumann Results

In contrast to the von Neumann analysis which provides information concerning the accu-
racy of the semi-discrete equations over the range of discrete wavelengths, an asymptotic

analysis of these results can provide information concerning the rate of convergence of

the method in the limit as the particle spacing goes to zero [6, 7, 25, 26]. As an example,
consider the truncation error of a one-dimensional semi-discretization of the advection
equation,

()

~q+lu

Th = K&q
~xq+l

+ higher order terms = O(Axq) (40)

where K is a constant independent of U and Ax, and q is the asymptotic rate of conver-

gence of the semi-discretization. Vichnevetsky, et al. have shown that there is a direct
relationship between rate of convergence, q, of Eq. (40) and “flatness” of the discrete

phase speed, Z(k), as k + O [25]. Indeed, they have shown that

z/c – 1 = ~ – 1 = KAxq(dc)q/c + higher order terms = O(kq). (41)

where q in Eq. (41) is identical to that in Eq. (40). Hence, to evaluate q, a Taylor series
expansion of @ is taken about k = O yielding,

(42)
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The lowest order non-zero term in Eq. (42) sets the rate of convergence of the semi-

discretization. In a similar manner, the asymptotic behavior of the second-order wave

equation may be obtained. The rate of convergence for the parabolic model equation
follows similarly, with the expansion

[

~2 825

zi/cl! – 1 = a(k = o)+ k[$g]k=o+ ~[~]k=o + “““
1

/a!-l (43)

used to evaluate q. Again, the lowest order non-zero term sets the asymptotic rate of

convergence.

Calculation of these

algebraic manipulation.
formulation results in a

asymptotic rates, while straight-forward, involves considerable

Further, each choice of refinement parameter and mass matrix

unique asymptotic expression. In order to conserve space, only
the resulting asymptotic rates of convergence are presented here. The interested reader
is directed to the literature for example calculations [25].

3 Results

This section summarizes the RKPM von Neumann and asymptotic analyses results.
These results were obtained using the cubic spline kernel function of Eq. (3) with linear
reproducing conditions enforced as outlined in $ 2.1. The effect of integration on dis-

cretization errors is investigated by considering both fully integrated and pointwise (or
trapezoidally) integrated advection, stiffness and mass matrices. Because a closed form

of the RKPM shape functions is not generally available, full integration is achieved by
employing Gaussian quadrature with 4 quadrature points between each pair of particles.
Doubling the number of quadrature points was found to have a negligible impact on the

effective diffusivit y or phase speed for the semi-discretizations considered.

As noted in ~ 2.1, the width (or support) of the kernel function, P, may be controlled

by adjusting the refinement parameter, r. In this way, the number of particles under
the function is controlled. Since the ability to refine the support (and hence resolve
finer scales of the modeled physics) is an important attribute of RKPM, the effect of

r is of concern. For this reason, a range of refinement parameters is considered. In

particular, refinement parameters corresponding to kernel functions of 3 and 5 particle
support (r = 0.5 and 1.0 respectively) are investigated. The transition from 3 to 5

particle support is also examined with r = 0.75 (symmetric kernel functions cover odd
numbers of particles so that 4 particle support is not possible). Finally, the energy error

minimizing refinement parameter (EEMR) derived by Liu and Chen is used. For the

cubic spline kernel functions used here, the EEMR is r = 1.14 [13].
In the discussion that follows, the dispersion, phase and group speed results are

presented as functions of non-dimensional wave number, 2Ax/~ = kAz/m. In order

to simplify the discussion, the following nomenclature has been adopted to identify the
mass matrix and quadrature rule used. The mass matrix is identified as C for consistent
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(~= 1), L for row-sum lumped (B= O), or H for higher-order (/?= 1/2); cf. Eq. (15).
The numerical integration scheme is identified as either F for full integration (as defined

above) or T indicating a trapezoidal rule (i.e. particle integration).
For the purpose of comparison, results are presented for linear FEM semi-discretizations.

The concomitant effective diffusivity, phase speed and group speed are calculated using

the formulae presented in $ 2.2 with linear finite element shape functions. The linear

FEM basis was chosen for comparison as it provides the same degree of consistency as

the RKPM discretizations used here.

3.1 First-Order Wave Equation

Normalized numerical phase speed is presented in Figure 1 for several FEM and RKPM

semi-discretization techniques and a range of refinement parameters. Results are plotted
for fully integrated consistent (CF), trapezoidally-integrated consistent (CT), fully inte-

grated higher-order (HF) and fully integrated lumped (LF) mass formulations. For the

purposes of interpretation, an ideal semi-discretization (in terms of phase speed) would
yield ~ = 1 for all resolvable wavelengths (i.e., 2A~/~ < 1).

Figure 1(a) shows the (strictly lagging) phase speed for the CF formulation. It is
clear from the figure that the EEMR, r = 1.14, provides the best phase response. As r is

decreased from its EEMR value, the phase speed deteriorates, achieving the limiting case
of the linear FEM. Figure 1 also illustrates the identical phase speed of the linear FEM
and the r = 0.5 RKPM methodologies. This results as linear FEM and RKPM r = 0.5
shape functions are the same for uniform particle spacing. All CF discretizations yield
VI = O at the Nyquist limit of the grid, indicating that the 2Ax waves are stationary

(the energy of these waves travels at their non-zero group velocity; cf. Figure 2). It is

noted that the CF, r = 1.0 phase speed results are identical to those of Vichnevetsky
and Bowles [25] where the cubic B-spline was used in a Galerkin weak form solution of
the first-order wave equation. Indeed, this is to be expected as the cubic spline kernel

function, p, used here is identically the cubic B-spline when r = 1 and the domain is
periodic. As the cubic B-spline automatically meets the moment conditions of $2.1 for

all moments, p and P are the same and the RKPM and Vichnevetsky test functions are
identical (and hence yield identical semi-discretizations). When other r are used, P is no
longer the true cubic B-spline and the RKPM results differ from those of Vichnevetsky.

Indeed, the contribution of RKPM is to allow variable r while retaining convergence of

the method (cf. Table 1).

Particle integration of the consistent mass and stiffness matrices (CT) yields a semi-

discretization which produces lagging phase speed over the range of resolvable wave-
lengths (cf. Figure 1(b)). As with the CF results, an increasing refinement parameter

corresponds to improved phase speed although the CF methodology outperforms the CT
discretization for all r considered. As with the CF formulation, CT phase speed goes to
zero at the Nyquist limit of the grid.

The effect of mass lumping on phase speed is demonstrated in Figure 1 (d). The
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LF formulation provides substantially worse phase speed over most of the resolvable
wavelengths, matching CF and CT methodologies only at 2Az/A = O, 1. Unlike the

consistent mass matrix formulations, increasing r for the lumped mass semi-discretization

increases the lagging phase errors. A comparison of Figures 1(c) and (d) show the

increased complexity of the higher order mass formulation only slightly improves the
phase speed results relative to the LF formulation.

Normalized group speed corresponding to the semi-discretizations of Figure 1 are
presented in Figure 2. For the purposes of comparison, V9 = c and thus cl = 1 in
the non-dispersive medium represented by the continuous form of the first-order wave
equation.

Figure 2(a) shows the group speed associated with the CF formulation. The figure

indicates that increased r results in greater accuracy in the sense that <1 remains close to 1
at shorter wavelengths. However, increasing r also results in a substantial increase in the
magnitude of the maximum (negative) group velocities that occur at 2Ax. Gresho [7] has
noted that first-order wave equation semi-discretizations which accurately represent phase

speed for shorter wavelengths produce greater negative group velocities for the shortest
wavelengths they cannot represent. These negative group speeds increase as d~l /dk must
increase for VI to transition from 1 to O over shorter 2Ax/A (presuming @l (A = 2Ax) = O

for semi-discretizations of the first-order wave equation). Thus, the appearance of large
negative group velocities suggests a method with good phase speed characteristics. It

will be demonstrated in $3.2 that the connection between large negative group velocities
and good phase behavior is not true for semi-discretizations of the second-order wave
equation.

The effect of point-wise integration on group speed is evident in a comparison of

the CF and CT results (cf. Figures 2(a)–(b)). Both methods show increasing accuracy
in terms of group speed as r is increased. Relative to the CF methodology, the CT
methodology exhibits substantially reduced maximum negative group speed at ~ = 2Ax,
reflecting the poorer phase speed behavior of the CT method.

As with the phase speed, lumping of the mass matrix has a dramatic effect on group

speed, further reducing their maximum negative values, again, reflective of their poor
phase speed. The higher order mass matrix has only a minor influence on group speed

relative to the LF formulation. Surprisingly, the maximum negat ive group speed, which
occurs at A = 2Ax for the CF and CT semi-discretizations, has shifted to longer wave-
lengths for the LF and HF schemes characterized by r = 1.0 and 1.14. Maximum negative

group speed for the r = 0.5 and 0.75 LF and HF formulations occur at A = 2Ax.
In order to quantify the performance of the methods considered, an error measure

(the phase ~-accuracy [26]) that defines the length of the segment along the 2Ax/A axis
between zero and the point (2 Ax/~)7 beyond which Co = 1+ – 1I ~ ~, is employed.
For engineering purposes ~ = 0.05 is assumed to be appropriate. Table 1 shows the

minimum number of particles required per wavelength, NT, to satisfy the stated criteria
where NT has been rounded up to the nearest integer. Again, it is clear that RKPM

with r = 1.14 outperforms the linear FEM formulation, requiring only 4 particles per
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wavelength in contrast to the 5 nodes required by FEM. Table 1 also indicates that for
~ = I. 14, the CT semi-discretization performsas well as the CF methodology in the Nv

sense. Since the CT method requires fewer computations and no background quadrature
grid as does its CF counterpart, these results suggest that the CT method may be a
practical alternative to the CF method. Finally, as suggested by Figure 1, the LF and

HF methods result in a significant deterioration in phase speed relative to the consistent
mass methods, requiring substantially more particles per wavelength to produce the same
phase ~-accuracy. Indeed, the “best” LF (r = 0.5- FEM) and “worst” CT (r = 0.5)

formulations require 13 and 6 particles per wavelength respectively.
An error measure similar to the phase ~-accuracy can be defined for the group speed.

Specifically, the group ~-accuracy defines the length of the segment along the 2Az/A
axis between zero and the point (2A~/J)7 beyond which cc = 1<– 1I > ~. As with

the phase accuracy, y is taken to be 0.05. Table 1 shows the minimum number of

particles required per wavelength, NT, to satisfy this group error criteria. Again, the
consistent mass matrix formulations display the best performance with the CF and CT
r = 1.14 methods requiring 4 and 5 particles per wavelength respectively. A comparison

of the phase and group values of Nv indicate that when co = c< the group -y-accuracy
criteria is more restrictive than that for phase. As with the phase -y-accuracy, group
~-accuracy indicates that the LF and HF formulations are quite inferior to the consistent

mass formulations. For example, the “worst” consistent mass formulation (CT, r = 0.5)
requires 7 particles per wavelength, while the “best” LF method needs, at a minimum,
21 particles.

Results of the asymptotic analysis described in ~ 2.3 are shown in Table 2. It is
clear from the table that excellent asymptotic rates of convergence are possible with the
appropriate choice of refinement parameter. Conversely, a poor choice of r may reduce
this asymptotic rate; although rates are still comparable to those for the linear FEM.
It should be noted that although the rates of convergence for the RKPM methods are

generally comparable to those for FEM, this is only a measure of the optimal rate of

convergence of the method (quality of the approximation as A -+ cm). In fact, solutions
are comprised of short to long wavelength components, all of which contribute to the error

of the semi-discretization [26]. Thus, as indicated by Gresho [7], the effective diffusivity,
phase and group speeds tell much more of the story and rates of convergence should be

interpreted carefully.

3.2 Second-Order Wave Equation

Results for FEM and RKPM CF, CT, HF and LF semi-discretizations are plotted in
Figure 3. As with the first-order wave equation, an ideal semi-discretization (in terms of
phase speed) would yield ~z = 1 for all resolvable wavelengths (i.e., 2Az/A < 1). Fig-

ure 3(a) shows the strict ly leading phase speed results for the CF formulation. Clearly
the best phase speed is achieved with the EEMR, r = 1.14. Incredibly, nearly perfect
phase speed is obtained for the range of 2Ax/A when this refinement parameter is used.
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Decreasing r below 1.14 results in degraded phase speeds with the worst behavior demon-
strated by the linear FEM (RKPM r = 0.5) methodology. All formulaticms considered
show strictly leading phase speeds. Irregardless of the value of T-, zero phase speed is

never achieved for the range of resolvable wavelengths, indicating that no wavelengths

are stationary on the grid.

The effect of point-wise integration of the consistent mass formulation (CT) is il-
lustrated in Figure 3(b). Again, increasing r results in reduced lagging phase errors.

Relative to the CF methodology, the CT method results in increased lagging phase er-
rors for all but very long wavelength waves (2Az/A w 1). Indeed, the general behavior

of @2 has changed dramatically relative to the CF formulation with phase speeds lagging

over the range of wavelengths, going to zero at A = 2Ax.
Interestingly, the use of trapezoidal integration (with a consistent mass matrix) results

in identical dispersion relations for the first and second-order wave equations (cf. Figures
1(b) and 3(b)). Similar behavior has been noted by Vichnevetsky and Bowles [25] when a

second-order central difference approximation is applied to both the first and second-order

wave equation. In this situation, the semi-discrete first-order equation is a consistent

representation of both the first-order wave and the second-order wave equation for the
right-moving wave. In the case of RKPM, a similar result has been obtained for r = 0.5.
However, we have been unable to verify this behavior analytically for the other refinement

parameters considered here. Regardless, numerical experiments (cf. Figures 1 and 3) have
verified that the discrete spectrum is identical for the two model hyperbolic equations
when trapezoidal integration is used.

Figures 3(c) and (d) show the numerical phase speed results for the HF and LF

formulations respectively. Both methodologies exhibit lagging phase speeds for the entire

range of discrete wavelengths. At the Nyquist limit, phase speed is non-zero for all r and
depends on the choice of r. Thus, unlike the CT formulation, all waves propagate at

non-zero speed. As with the HF and LF formulations of the first-order wave equation,
lagging phase errors increase with increasing r for any dimensionless wavelength. Again,

the HF formulation provides little improvement over the LF formulation.
Normalized group speed corresponding to the semi-discretizations of Figure 3 are

presented in Figure 4. The group speed associated with the CF formulation indicates

increased accuracy corresponding to increased r (cf. Figure 4(a)). Indeed, RKPM with
~ = 1.14 performs substantially better than linear FEM, producing nearly perfect group

speed to 2Ax/A = 0.7. Surprisingly, group velocities are positive for the entire range of
discrete wavelengths with (z going to zero at 2Ax/A = 1. Thus, energy associated with

all but 2Ax waves (which remain stationary) travels in the same direction as the waves

themselves.
The effect of particle integration on the consistent mass semi-discretization of the

second-order wave equation is demonstrated in Figure 4(b). A significant effect of par-
ticle integration seems to be the introduction of negative group velocities which reach a
maximum at A = 2Ax. It is clear from Figure 3(a)–(b) that the CF method produces
better phase speed than does the CT formulation. Thus, unlike semi-discretizations of
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the first-order wave equation, negative group velocity associated with the second-order

wave formulations does not suggest good phase behavior.

Figures 4(c) and (d) show the numerical group speed results for the HF and LF
formulations respectively. As with the CT formulation, the HF and LF systems can
produce negative group speed. Surprisingly, however, negative group speed is achieved

only for r = 1 and 1.14 semi-discretizations (the maximum value is less than for the CT
method). When the r = 0.5 and 0.75 semi-discretizations are employed, the group speeds

are strictly positive. Further, as with the first-order HF and LF semi-discretizations

corresponding to r = 1.0 and 1.14, the group speed reaches a (negative) maximum at
wavelengths less than the Nyquist limit.

As for the first-order wave equation, phase ~-accuracy is defined with y = 0.05 as-

sumed appropriate for engineering purposes. These results are presented in Table 3 for

the CF, CT, HF and LF formulations already considered. Again, it is clear that CF-
RKPM with r = 1.14 outperforms all other formulations investigated here, requiring 3
particles (the Nyquist sampling limit) per wavelength. As a comparison, linear CF-FEM
requires 7 particles per wavelength while LF-RKPM (r = 1.14) requires 14 particles. The

best linear FEM formulation (HF) requires 4 nodes per wavelength although it results

in substantially worse phase speed relative to CF-RKPM beyond this limit (cf. Figure

3). Additionally, the CT formulation performs nearly as well as the CF formulation for
r = 1.14 in terms of NY although, as with HF-FEM, its phase speed behavior beyond
this point is not comparable to that of the best CF-RKPM.

Although the consistent mass methodologies may produce substantially better phase
speed than the LF or HF formulations when r is chosen appropriately (r > 1.0) poor

choice of r can degrade their performance. Indeed, the LF and HF methods may perform
as good as or even slightly better than consistent formulations provided r is not chosen
wisely (cf. Table 3). For example, HF with r = 0.5 requires only 4 particles per wave-

length while CF with the same r requires 7 particles for the same accuracy. Clearly, the

choice of the refinement parameter and mass matrix formulation are important to the

performance of these methods.
Results of the group ~-accuracy (defined similar to that of the first-order discretiza-

tions) are also presented in Table 3. Clearly, the group y-accuracy is more restrictive

than is the phase ~-accuracy. Again, the CF-RKPM method with r = 1.14 performs the
best requiring 4 particles per wavelength while the best linear FEM methodology (HF)
requires 6 nodes. The CT formulation performs nearly as well as the C F formulation
for the EEMR although, again, demonstrates negative group velocity not evident for the

CF method. The worst performance is demonstrated by the LF-RKPM method with
r = 1.14.

Asymptotic analysis results are shown in Table 4. As with the first-order wave equa-

tion excellent asymptotic rates of convergence are possible with the appropriate choice

of refinement parameter. Conversely, values of r may be chosen which reduce these rates
to those comparable to linear FEM. Again, it is emphasized that the asymptotic anal-
ysis provides information concerning the behavior of the discretization around k = O.
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Information concerning the global accuracy of the method requires examination of the

behavior of the semi-discretization over the rangeof discrete wavelengths.

3.2.1 Parabolic Equation

The normalized effective diffusivity results for the parabolic partial differential equation

are presented in Figure 5 for several FEM and RKPM semi-discretizations (CF, CT,

HF and LF) and a range of refinement parameters. Recall that the physical diffusivity
is independent of wavenumber, thus ~/a = 1 over all discrete wavelengths for an ideal
semi-discretization. With this in mind, the CF formulation (Figure 5(a)) with the EEMR,
T = 1.14, performs best though slightly over-diffusive for short wavelengths (maximum

@/Q = 1.06). As r is decreased from 1.14, the method becomes increasingly over-diffusive.
The worst performance is exhibited by the linear FEM (or RKPM with r = 0.5) semi-

discretization with maximum ~/a = 1.45 at 2Ax/~ = 0.8.
Particle integration of the mass and stiffness matrices (CT) yields serni-discretizations

that are under-diffusive for all values of T investigated, although the point at which E/a
diverges substantially from 1 (relative to our 5% error criteria) increases with increased
refinement parameter. Another important point is that for A = 2Ax, ~ is zero. This

indicates that 2Ax waves will persist (i.e. they will not be damped) resulting in a “noisy”
solution. The fully integrated methodologies investigated here retain some (small for LF
and HF with large r) diffusive character at these wavelengths.

The effect of mass lumping on effective diffusivity is demonstrated in Figure 5(d). Un-
like the consistent mass formulations, increasing r in the lumped mass semi-discretization

has the effect of destroying the accuracy of the solution in terms of effective diffusivity

at high wavenumbers. As is clear from a comparison of Figures 5(c)–(d), the added com-
plexity of the higher order mass formulation improves, slightly, the diffusive character

relative to the LF.

For concreteness, we consider the y-accuracy results of Table 5. Again, the best

performers are the consistent mass formulations with T set to the EEMR. For all r the
CF methodology is clearly more accurate than the CT formulations. While the HF FEM
formulation performs nearly as well as the best CT methodology, increased r rapidly

destroys the method. Finally, as decreasing r has the effect of decreasing the accuracy
of the CF and CT methods while increasing that of the LF and HF methods, the latter

methods do perform better than the former at small r. For example LF outperforms CT
for r = 0.75. Of course both these formulations are much inferior to CF (or even CT)

with r = 1.14.

As with the hyperbolic equations, the refinement parameter modifies the results of

the asymptotic analysis (cf. Table 6). The best convergence rates (0 (A#) ) possible
are for the consistent mass matrix formulation with T = 1 where the cubic B-spline is

obtained. Convergence rates comparable to those for linear FEM are obtained for the
other semi-discretizations considered.
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4 Conclusions

Numerical errors associated with the RKPM discretization of the parabolic, first-order

and second-order wave equations have been evaluated here in terms of von Neumann

analysis. The semi-discretizations considered enforced linear consistency and employed
variations on matrix integration (full Gauss quadrature or particle integrations) and

type (consistent, lumped or higher order). All formulations incorporate a cubic spline
kernel function with the EEMR, r = 1.14. Linear FEM semi-discretization results are

also presented for the purpose of comparison. In light of these analyses the following

conclusions may be drawn.
Irregardless of the partial differential equation considered, the consistent mass, fully

integrated RKPM formulation employing the EEMR produces the best numerical per-
formance. In terms of the hyperbolic equations, only 3 to 4 particles per wavelength

are required to meet a 5910 phase error criteria while linear FEM requires 4 to 5 nodes.

Similarly, the parabolic equation requires only 4 particles per wavelength to satisfy a 5%
diffusivity error criteria in contrast to linear FEM which requires 10 nodes for the consis-
tent mass semi-discretization. Incredibly, RKPM semi-discretizations of the second-order
wave equation require only 3 particles per wavelength (the Nyquist limit) for phase errors

of less than 2.5 percent

Results indicate that point-wise or trapezoidal integration results in only a minor

degradation in phase speed for the first-order wave equation when the EEMR is used.
This suggests that the CT methodology may be an attractive alternative to Gaussian
quadrature which is computationally intensive and requires a background integration
grid. The application of trapezoidal integration to the second-order wave and parabolic

equations is more problematic. Although the number of particles needed to achieve the

desired accuracy in terms of phase speed or diffusivity is only slightly increased for CT
relative to CF semi-discretizations, the behavior of the phase (first-order wave equation)

or diffusivity (parabolic equation) is substantially degraded for the CT formulation. In-

deed, the nearly perfect phase speed of the CF second-order wave semi-discretizations
is destroyed when trapezoidal integration is used. Further, the CT semi-discretization

introduces negative group velocity that is not evident in the CF formulation.

Finally, the lumped and higher order mass formulations introduce severely lagging
phase speed for the hyperbolic equations and over-diffusive behavior for the parabolic

equation. Indeed, the consistent mass matrix formulations significantly outperform the

lumped and higher order formulations for all but small r (r = 0.5 and r <0.75- lumped

and higher order matrices respectively). It should be noted that although the consistent
mass formulations can substantially outperform the lumped formulations, poor choice of
r (i.e. r < 0.75) produce formulations which are actually worse than the lumped and

higher order approximations in terms of phase speed and diffusivity accuracy.
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Figure 1: First-order wave equation phase speed for the (a) fully integrated consistent
mass (CF), (b) trapezoidally integrated consistent mass (CT), (c) fully integrated higher

order mass (HF) and (d) fully integrated lumped mass (LF) RKPM semi-discretizations.
Results are presented for a range of refinement parameters.
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Figure 2: First-order wave equation group speed for the (a) fully integrated consistent

mass (CF), (b) trapezoidally integrated consistent mass (CT), (c) fully integrated higher

order mass (HF), and (d) fully integrated lumped mass (LF) RKPM semi-discretizations.

Results are presented for a range of refinement parameters.
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order mass (HF), and (d) fully integrated lumped mass (LF) RKPM semi-discretizations.

Results are presented for a range of refinement parameters.
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Figure 4: Second-order wave equation group speed for the (a) fully integrated consistent

mass (CF), (b) trapezoidally integrated consistent mass (CT), (c) fully integrated higher

order mass (HF), and (d) fully integrated lumped mass (LF) RKPM semi-discretizations.
Results are presented for a range of refinement parameters.
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Phase Group

Method r (2 Ax/A)7 N, (2 Ax/~)y N,

CF 0.50 (FEM) 0.51 5 0.35 7

0.75 0.56 5 0.40 6

1.00 0.76 4 0.61 5

1.14 (EEMR) 0.83 4 0.70 4

CT 0.50 (FEM) N/A N/A N/A N/A

0.75 0.22 11 0.13 17

1.00 0.51 5 0.35 7

1.14 (EEMR) 0.66 4 0.50 5

HF 0.50 (FEM) 0.24 10 0.14 16

0.75 0.23 10 0.13 17

1.00 0.17 13 0.10 21

1.14 (EEMR) 0.15 15 0.09 23

LF 0.50 (FEM) 0.18 13 0.10 21

0.75 0.16 14 0.09 23

1.00 0.12 17 0.07 29

1.14 (EEMR) 0.11 20 0.06 33

Table 1: Reproducing Kernel Particle Method -y-accuracy for the first-order wave equa-

tion in terms of phase and group speed. Results are presented for a range of refinement
parameters and NT has been rounded to the next highest integer.

Method r = 0.50 (FEM) r = 0.75 r = 1.00 r = 1.14 (EEMR)

CF O(AX4) O(AX2) O(AX8) O(AX2)

HF 0(Ax2) O(AX2) O(AX2) 0(Ax2)

LF O(AX2) O(AX2) O(AX2) O(AX2)

CT N/A O(AX2) O(AX4) O(AX2)

Table 2: Reproducing Kernel Particle Method asymptotic convergence rates for the first-

order wave equation semi-discretizations and a range of refinement parameters.
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Phase Group

Method r (2 Ax/~)v NY (2 Ax/A), N,

CF 0.50 (FEM) 0.35 7 0.20 11

0.75 0.59 5 0.36 7

1.00 1.00 3 0.66 5
1.14 (EEMR) 1.00 3 0.76 4

CT 0.50 (FEM) N/A N/A N/A N/A

0.75 0.22 11 0.13 17

1.00 0.51 5 0.35 7

1.14 (EEMR) 0.66 4 0.50 5

HF 0.50 (FEM) 0.68 4 0.46 6

0.75 0.36 7 0.21 11

1.00 0.24 10 0.14 16
1.14 (EEMR) 0.21 11 0.12 18

LF 0.50 (FEM) 0.35 7 0.20 11

0.75 0.24 10 0.14 16
1.00 0.18 13 0.10 21

1.14 (EEMR) 0.15 14 0.09 24

Table 3: Reproducing Kernel Particle Method -y-accuracy for the second-order wave equa-

tion in terms of phase and group speed. Results are presented for a range of refinement
parameters and NT has been rounded up to the next highest integer.

Method r = 0.50 (FEM) r = 0.75 r = 1.00 r = 1.14 (EEMR)

CF 0(Ax2) 0(Ax2) O(AXG) 0(Ax2)

HF O(AX4) 0(Ax2) 0(Ax2) 0(Ax2)

LF 0(Ax2) 0(Ax2) 0(Ax2) 0(Ax2)

CT N/A 0(Ax2) 0(Ax4) 0(Ax2)

Table 4: Reproducing Kernel Particle Method asymptotic convergence rates for the

second-order wave equation semi-discretizations and a range of refinement parameters.
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Method (zAx/A), N,

CF 0.50 ~FEM) 0.24 10

0.75 0.45 6

1.00 0.81 4

1.14 (EEMR) 0.91 4

0.50 (FEM) N/A N/A

0.75 0.16 14

1.00 0.44 6

1.14 (EEMR) 0.61 5

~

HF 0.50 (FEM) 0.58 5

0.75 0.25 9

1.00 0.17 13

1.14 (EEMR) 0.15 14

LF 0.50 (FEM) 0.25 9

0.75 0.17 13

1.00 0.12 17

1.14 (EEMR) 0.11 20

Table 5: Reproducing Kernel Particle Method ~-accuracy for the parabolic PDE in terms

of numerical diffusivity. Results are presented for a range of refinement parameters and
NT has been rounded to the next highest integer.

:0.75 \r = 1.00 I r = 1.14 (EEMR) IMethod r = 0.50 (FEM) r=

CF O(AX2) O(AX2) O(AX6) O(AX2)

HF 0(.AX4) O(AX2) O(AX2) O(AX2)

LF O(AX2) O(AX2) O(AX2) 0(AX2)

CT N/A O(AX)2 0(AX4) O(AX2)

Table 6: Reproducing Kernel Particle Method asymptotic convergence rates: for the

parabolic PDE semi-discretizations and a range of refinement parameters.
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